DOI QR코드

DOI QR Code

GPS/DCS/WLAN 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작

Design and Fabrication of Triple Band Antenna Applicable to GPS/DCS/WLAN System

  • 김민재 (신라대학교 스마트전기전자공학부) ;
  • 박상욱 (신라대학교 스마트전기전자공학부) ;
  • 윤중한 (신라대학교 스마트전기전자공학부)
  • 투고 : 2019.04.18
  • 심사 : 2019.06.15
  • 발행 : 2019.06.30

초록

본 논문에서는 GPS/DCS/WLAN에 시스템에 활용 가능하도록 삼중대역 안테나를 제안하였다. 제안된 안테나는 두 개의 스트립 선로와 접지면에 세 개의 슬릿을 삽입하여 요구하는 주파수 대역과 반사손실 특성을 얻었다. 제안된 안테나는 $31mm(W1){\times}50mm(L1)$의 크기와 두께(h) 1.6 mm, 그리고 비유전율이 4.4인 FR-4 기판 위에 $22mm(W7+W12+W8){\times}43mm(L4+L3)$의 크기로 설계되었다. 제작 및 측정결과로부터, -10dB 기준으로 340 MHz (1.465~1.805 GHz), 480 MHz (2.155~2.635 GHz), 1950 MHz (4.975~6.925 GHz)의 대역폭을 얻었다. 또한 요구되는 주파수 삼중대역에서 이득과 방사패턴 특성을 측정하여 나타내었다.

In this paper, we propose a triple band antenna for GPS / DCS / WLAN system. The proposed antenna has the characteristics required by considering the interconnection of two strip lines and various slits on the ground place. The total substrate size is $31mm(W1){\times}50mm(L1)$, thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of $22mm(W7+W12+W8){\times}43mm(L4+L3)$ antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz), 480 MHz (2.155 to 2.635 GHz) and 1950 MHz (4.975 to 6.925 GHz) were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

키워드

KCTSAD_2019_v14n3_475_f0001.png 이미지

그림 1. 제안된 GPS/DCS/WLAN 안테나의 구조 Fig. 1 Structure of the proposed GPS/DCS/WLAN antenna

KCTSAD_2019_v14n3_475_f0002.png 이미지

그림 2. 제안된 GPS/DCS/WLAN 안테나의 설계과정 Fig. 2 Design process of proposed GPS/DCS/WLAN antenna

KCTSAD_2019_v14n3_475_f0003.png 이미지

그림 3. 그림 2의 안테나 설계과정에 따른 시뮬레이션 반사손실 Fig. 3 Simulation reflection loss according to the antenna design process of Figure 2

KCTSAD_2019_v14n3_475_f0004.png 이미지

그림 4. L3 길이 변화에 의한 시뮬레이션 반사손실 Fig. 4 Simulation return loss due to L3 length change

KCTSAD_2019_v14n3_475_f0005.png 이미지

그림 6. 그림 5의 슬릿 영향에 의한 시뮬레이션 반사손실 Fig. 6 Simulated reflection loss due to slit effect in Fig. 5

KCTSAD_2019_v14n3_475_f0006.png 이미지

그림 7. 제안된 안테나의 전류분포 (a) 1.80 GHz, (b) 2.45 GHz, (c), 5.60 GHz Fig. 7 The current distribution of the proposed antenna (a) 1.80 GHz, (b) 2.45 GHz, (c), 5.60 GHz

KCTSAD_2019_v14n3_475_f0007.png 이미지

그림 8. 제안된 안테나의 프로토 타입 (a) 앞면 (b) 뒷면 Fig. 8 Prototype of the proposed antenna: (a) front view and (b) back view

KCTSAD_2019_v14n3_475_f0008.png 이미지

그림 9. 제안된 안테나의 측정된 반사손실 Fig. 9 The measured return loss results of the proposed antenna

KCTSAD_2019_v14n3_475_f0009.png 이미지

그림 10. 1.50 GHz에서 측정된 3-D 방사패턴 Fig. 10 Measured 3-D radiation pattern in 1.50 GHz

KCTSAD_2019_v14n3_475_f0010.png 이미지

그림 11. 1.80 GHz에서 측정된 3-D 방사패턴 Fig. 11 Measured 3-D radiation pattern in 1.80 GHz

KCTSAD_2019_v14n3_475_f0011.png 이미지

그림 12. 2.45 GHz에서 측정된 3-D 방사패턴 Fig. 12 Measured 3-D radiation pattern in 2.45 GHz

KCTSAD_2019_v14n3_475_f0012.png 이미지

그림 13. 5.60 GHz에서 측정된 3-D 방사패턴 Fig. 13 Measured 3-D radiation pattern in 5.60 GHz

KCTSAD_2019_v14n3_475_f0013.png 이미지

그림 14. 제안된 안테나의 측정된 최대 그리고 평균 이득 Fig. 14 Measured peak and average gains of the proposed antenna

KCTSAD_2019_v14n3_475_f0014.png 이미지

그림 5. (a) 슬릿 3을 삽입 했을때 (b) 슬릿 2와 슬릿 3이 대칭일 때 Fig. 5 (a) When slit 3 is inserted (b) When the slit 2 and the slit 3 are symmetrical

표 1. 설계된 안테나의 파라미터 Table 1. Parameter of the designed antenna

KCTSAD_2019_v14n3_475_t0001.png 이미지

참고문헌

  1. W. Yong, "Characteristics of microstrip array antenna," J. of the Korea Institute of Electronic Communication Science, vol. 7 no. 6, 2012, pp. 1281-1286. https://doi.org/10.13067/JKIECS.2012.7.6.1281
  2. S. Kakkar and S. Rani, "A novel antenna design with DGS for emergency management," International J. of applied Electromagnetics, vol. 42, no. 4, 2013, pp. 629-638. https://doi.org/10.3233/JAE-131690
  3. K. Kim, "Design and fabrication of DGS band-pass filter for dual-band," J. of the Korean Association of Information Technology, vol. 12 no. 9, 2014, pp. 37-43.
  4. J. Kim, G. Kim, and S. Kim, "Low pass filter design using the SRR-DGS resonator," J. of the Korean Society of Information and Electronics and Telecommunications, vol. 8, no. 4, 2015, pp. 257-258.
  5. T. Choe, J. Kim, and J. Yoon, "A Design and implementation of dual-band monopole antenna with DGS," J. of the Korea Institute of Electronic Communication Science, vol. 11, no. 9, 2016, pp. 841-848. https://doi.org/10.13067/JKIECS.2016.11.9.841
  6. V. Satam, "Two element compact UWB diversity antenna with combination of DGS and parasitic elements," Wireless Personal Communications, vol. 98, no. 3, 2018, pp. 2901-2911. https://doi.org/10.1007/s11277-017-5006-5
  7. J. Son, U. An, J. Ko, and K. Kwak, "Recent trend to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, 2016, pp. 3-9.
  8. D. Cho, H. Son, J. Lee, and S. Lee, "A Study on the Enhancement of Isolation of the MIMO Antenna for LTE/DCS1800/USPCS1900 Handset," J. of the Institute of Electronics Engineers of Korea, vol. 47, no. 10, 2010, pp. 80-85.
  9. J. Hur, G. Byun, H. choo, and Y. Kay, "Design of dual-band GPS antenna using a single-layer coupled-feed structure," Electronic Society of Korea, vol. 27, no. 9, 2016, pp. 775-782.
  10. O. Kwon, R. Song, and B. Kim, "A fully integrated Shark-fin antenna for MIMO-LTE, GPS, WLAN and wave applications," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 4, 2018, pp. 600-603. https://doi.org/10.1109/LAWP.2018.2805681
  11. H. Liu, F. Qin, J. Lei, and P. Wen, "Dual-band Microstrip-fed Bow-Tie antenna for GPS and WLAN application," Microwave and Optical Technology Letters, vol. 56, no. 9, 2014, pp. 2088-2091. https://doi.org/10.1002/mop.28538
  12. S. Yoon and M. Jong, "A design of dual-band microstrip antenna loading inverted L-shaped parasitic elements vertically at radiation apertures for GPS applications," The J. of the Korea Institute of Intelligent Transport Systems, vol. 14, no. 5, 2015, pp. 38-43. https://doi.org/10.12815/kits.2015.14.5.038
  13. M. Ahsan, M. lslam, and M. Ullah, "A Microstrip-fed reformed rectangular shape slotted patch antenna for simultaneous operation in GPS and WLAN bands," Microwave and Optical Technology Letters, vol. 57, no. 9, 2015, pp. 2204-2207. https://doi.org/10.1002/mop.29290
  14. S. Chen, M. Fang, D. Dong, M. Han, and G. Liu, "Compact multlband antenna for GPS/WiMAX/WLAN applications," Microwave and Optical Technology Letters, vol. 57, no. 8, 2015, pp. 1769-1773. https://doi.org/10.1002/mop.29189
  15. D. Seo, H. Lee, J. Jung, and Y. Sung, "Dual-band antenna using a C-Shaped dual-feed for GPS/WLAN applications," Microwave and Optical Technology Letters, vol. 58, no. 5, 2016, pp. 1207-1211. https://doi.org/10.1002/mop.29766
  16. W. Ren, S. Hu, and C. Jiang, "An ACS-fed, F-shaped monopole antenna for GPS/WLAN/WIMAX applications," J. of Microwave and Wireless Technologies, vol. 9, no. 5, 2017, pp. 1123-1129. https://doi.org/10.1017/S1759078716001173
  17. H. Piao, Y. Jin, J. Tak, and J. Choi, "Compact mobile quad-band slot antenna design for GPS, WiMAX, and WLAN applications," J. of Electromagnetic Engineering and Science, vol. 17, no. 2, 2017, pp. 57-64. https://doi.org/10.5515/JKIEES.2017.17.2.57
  18. S. Ullah, F. Faisal, A. Ahmad, and U. Ali, "Design and analysis of a novel triple-band flower-shaped planar antenna for GPS and WiMAX applications," J. of Electromagnetic Waves and Applications, vol. 31, no. 9, 2017, pp. 927-940. https://doi.org/10.1080/09205071.2017.1330160