DOI QR코드

DOI QR Code

Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device.

자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발

  • 박현문 (전자부품 SoC 플랫폼 연구센터) ;
  • 이정철 (전자부품연구원, SoC 플랫폼연구센터) ;
  • 김병수 (전자부품 SoC 플랫폼 연구센터)
  • Received : 2019.05.25
  • Accepted : 2019.06.15
  • Published : 2019.06.30

Abstract

The advances of semiconductor and circuitry technology dovetailed with nano processing techniques have further enhanced micro-miniaturization, sensitivity, longevity and reliability in MID(Medical Implant Device). Nevertheless, one of the remaining challenges is whether power can sufficiently and continuously be supplied for the operation of the MID. Self-powered MID that harvest biomechanical energy from human motion, respiratory and muscle movement are part of a paradigm shift. In this paper, we developed a rechargeable pacemaker through self-power generation with the triboelectric nanogenerator. We demonstrate a fully implanted pacemaker based on an implantable triboelectric nanogenerator, which act as a storage as well as active movement on a large-animal(dog) scale. The self-power pacemaker harvested from animal motion is 2.47V, which is higher than the required pacemaker device sensing voltage(1.35V).

나노 공정기술을 이용한 반도체 및 회로기술의 발전은 의료용 삽입형 기기(MID)의 소형화, 감도, 수명, 신뢰성을 더욱 향상했지만, 최근 MID의 지속적인 동작을 위한 전원의 지속적인 제공 여부가 중요한 도전과제 중 하나이다. 이러한 이유로 신체 내에서 다양한 생체 역학 에너지를 활용하는 자체 전원 이식형 의료기기가 최근에 많이 연구되고 있다. 본 논문에서는 TENG를 이용한 자가발전을 통해 재충전이 가능한 심장박동기를 개발하였다. 그리고 우리는 대형동물의 동작에 따라 삽입된 심장박동기에 내장된 TENG의 발전을 검증하였다. 동물의 움직임으로부터 수집되는 전력은 2.47V로 심장박동기에 센싱을 위해 필요한 전압(1.35V)보다 높은 전원을 획득할 수 있었다.

Keywords

KCTSAD_2019_v14n3_619_f0001.png 이미지

그림 1. 제안된 심장박동기의 전체시스템 구조도 Fig. 1 Overall system structure of the proposed pacemaker

KCTSAD_2019_v14n3_619_f0002.png 이미지

그림 2. 심장박동기 티타늄 시제품 및 내부에 사용되는 TENG 발전소자 Fig. 2 Built-in TENG generator source and titanium based prototype with the pacemaker

KCTSAD_2019_v14n3_619_f0003.png 이미지

그림 3. TENG의 전력 변환 및 발전구조 Fig. 3 Power conversion and power generation structure associated with the TNEG

KCTSAD_2019_v14n3_619_f0004.png 이미지

그림 4. 3~5Hz에서의 TENG 발전량 결과 (위, 전류/ 아래, 전압) Fig. 4 TENG power generation results at 3~5Hz (Top, Voltage/Bottom, Current)

KCTSAD_2019_v14n3_619_f0005.png 이미지

그림 5. 심장박동기 보드(왼쪽)과 TENG 하베스팅보드(오른쪽) Fig. 5 Pacemaker(Left) and TENG Harvesting Board(Right)

KCTSAD_2019_v14n3_619_f0006.png 이미지

그림 6. TENG 하베스팅보드의 출력 전력 검증 Fig. 6 Output voltage and current of the TENG Harvesting Board

KCTSAD_2019_v14n3_619_f0007.png 이미지

그림 7. 심장박동기 모니터링 인터페이스 Fig. 7 Pacemaker remote monitoring UI

KCTSAD_2019_v14n3_619_f0008.png 이미지

그림 8. 심장박동기 설정 인터페이스 Fig. 8 Pacemaker device remote control UI

KCTSAD_2019_v14n3_619_f0009.png 이미지

그림 9. 심장박동기의 전임상시험과 수술과정 Fig. 9 Preclinical study and animal operation of Pacemaker

KCTSAD_2019_v14n3_619_f0010.png 이미지

그림 10. 잡견 동작에 따른 자가발전 심장박동기 발전 전압 모니터링 Fig. 10 Generation voltage monitoring of the Self-powered pacemaker according by animal movement

References

  1. K, Murakawa, M. Kobayashi, O. Nakamura, and S. Kawata, "A wireless near-infrared energy system for medical implants," IEEE Engineering Medicine and Biology Mag., vol. 18, 1999, pp 70-72. https://doi.org/10.1109/51.805148
  2. H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z. L. Wang, H. Zhang, and Z. Li, "Symbiotic cardiac pacemaker," nature communications, vol. 10, no. 1, Dec. 2019, pp 1-20. https://doi.org/10.1038/s41467-018-07882-8
  3. Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, and Z. Wang, "In Vivo Powering of Pacemaker by Breathing‐Driven Implanted Triboelectric Nanogenerator," Advanced materials, vol. 26, no. 33, July. 2014, pp. 5851-5856. https://doi.org/10.1002/adma.201402064
  4. A. Amar, A. Kouki, and H. Cao, "Power Approaches for Implantable Medical Devices," Sensors, vol. 15, no. 11, Nov. 2015, pp. 28889-28914. https://doi.org/10.3390/s151128889
  5. A. DeHennis, S. Getzlaff, D. Grice, and M. Mailand, "An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor," IEEE j. of biomedical and health informatics, vol. 20, no. 1, Jan. 2016, pp 18-28. https://doi.org/10.1109/JBHI.2015.2475236
  6. R. Mahdi and S. Loius, "Energy sources and their development for application in medical devices," J. of Expert Review of Medical Devices, vol. 7. no. 5, Sept. 2010, pp. 693-709. https://doi.org/10.1586/erd.10.20
  7. C. Sue and N. Tsai, "Human powered MEMS-based energy harvest devices," J. of Applied energy, vol. 93, May. 2002, pp. 390-403.
  8. K. Selvan and M. Ali, "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," J. of Renewable and Sustainable Energy Reviews, vol. 54, Feb. 2016, pp. 1035-1047. https://doi.org/10.1016/j.rser.2015.10.046
  9. J. Katic, S. Rodriguez, and A. Rusu, "A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters," IEEE Trans. on Power Electronics, vol. 33, no. 5, May 2018, pp. 4125-4134. https://doi.org/10.1109/TPEL.2017.2712668
  10. Z. Yang, S. Zhou, J. Zu, and D. Inman, "High-performance piezoelectric energy harvesters and their applications," J. of Joule, vol. 2, no. 4, Apr. 2018, pp. 642-697. https://doi.org/10.1016/j.joule.2018.03.011
  11. Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shin, X. Wang, Y. Jin, H. Ouyang, Z. Li, and Z. Wang, "Biodegradable triboelectric nanogenerator as a life-time designed implantable power source," Science Advances, vol. 2, no. 3, Mar. 2016, pp. 1-6.
  12. H. Park, T. Hwang, and D. Kim, "A Development of Energy Storage Monitoring System Architecture for Triboelectric Nanogenerator in the Implant Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, Apr. 2018, pp. 473-480. https://doi.org/10.13067/JKIECS.2018.13.2.473
  13. H. Park, D. Kim, and B. Kim, "A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, Oct. 2018, pp. 1093-1100. https://doi.org/10.13067/JKIECS.2018.13.5.1093
  14. P. Kumar, V. Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, and H. Wei, "The Design of a Thermoelectric Generator and Its Medical Applications." J. of Designs, vol. 3, no. 2, Apr. 2019, pp. 1-26.
  15. FDA, 'Ultrasound Imaging:Diagnostic ultrasonic transducer, 892.1570, 90-ITX', U.S, 2016.
  16. N. Jackson, Z. Olszewski, C. O'Murchu, and A. Mathewson, "Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker," Sensors and Actuators A: Physical. vol. 264, no. 1. Sept. 2017, pp. 212-218. https://doi.org/10.1016/j.sna.2017.08.005
  17. H. Park, J. Kwon, D. Kim, and B. Kim, "Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, Feb. 2019, pp. 225-234. https://doi.org/10.13067/JKIECS.2019.14.1.225