DOI QR코드

DOI QR Code

Seasonal phytoplankton dynamics in oligotriphic offshore water of Dokdo, 2018

2018년 독도 주변 빈영양 수괴에서 계절별 식물플랑크톤 동태

  • 이민지 (한국해양과학기술원 위해성분석연구센터) ;
  • 김윤배 (한국해양과학기술원 울릉도.독도해양연구기지) ;
  • 강정훈 (한국해양과학기술원 위해성분석연구센터) ;
  • 박찬홍 (한국해양과학기술원 동해연구소) ;
  • 백승호 (한국해양과학기술원 위해성분석연구센터)
  • Received : 2018.12.31
  • Accepted : 2019.02.15
  • Published : 2019.03.31

Abstract

To investigate the characteristics of seasonal environment and phytoplankton community structure in the coastal area of Dokdo, a survey of Dokdo around waters was conducted during the four seasons. Phytoplankton of 4 phylum 72 species in four seasons were collected in Dokdo around water. The seasonal mean abundance of phytoplankton were $3.32{\times}10^4cells\;L^{-1}$ in winter, $1.04{\times}10^4cells\;L^{-1}$ in spring, $0.28{\times}10^4cells\;L^{-1}$ in summer, and $4.86{\times}10^4cells\;L^{-1}$ in autumn in Dokdo around water. During winter, the diatoms Chaetoceros spp. had dominated. During spring, when the nutrients in the euphotic layer were depleted, the nano-flagellates and Cryptomonas appeared at surface layer. In summer, the abundance of phytoplankton was relatively low, which lead to occurrence of diatoms such as genus of Chaetoceros, Rhizosolenia, and Skeletonema. In autumn, Pseudo-nitzschia spp. was the most dominant species and tropical species such as Amphisolenia sp. and Ornithocercus magnificus were observed, implying that they may have introduced within warm water current such as Kurosiwo Current. Therefore, although natural phytoplankton communities in the vicinity water of Dokdo are mainly influenced by Tsushima Warm Current branched Kurosiwo Current, their population dynamics was affected on the spatio-temporal change of physicochemical factors by short-term wind events, namely "island effect". Long-term survey research is needed to facilitate food-web response in marine ecosystem associated with phytoplankton biomass and physicochemical factors including the warm water current in oligotrophic offshore water of Dokdo, which may have significant role for sustainable use of Dokdo.

본 연구는 지리적인 이유로 부유생물 생태연구가 상대적으로 진행되지 않은 독도 주변 해역에서 계절적 환경 특성과 더불어 부유생물 식물플랑크톤 군집구조 변화 특성을 파악하고자 하였다. 본 해역에서 4계절 동안 총 4문 72종의 식물플랑크톤이 출현하였으며, 전 계절 평균 식물플랑크톤 현존량은 $2.38{\times}10^4cells\;L^{-1}$로 낮은 값을 보였다. 본 지역은 인류에 인한 오염이 전무한 곳이므로 섬연안임에도 외양과 같은 생태특성을 보였다. 동계에는 33종의 식물플랑크톤이 출현하였고, 전체 평균 식물플랑크톤 현존량은 $3.32{\times}10^4cells\;L^{-1}$으로 비교적 높은 현존량을 보였다. 종조성은 규조류 Chaetoceros lorenzianus, C. pseudocurvisetus 등이 우점하였다. 춘계는 15종의 식물플랑크톤이 출현하였으며, 평균 식물플랑크톤 현존량은 $1.04{\times}10^4cells\;L^{-1}$로 춘계임에도 매우 낮은 현존량을 보였다. 종조성은 다양한 종류의 nano-flagellate가 출현하였다. 하계 46종의 식물플랑크톤이 출현하였으며, 식물플랑크톤 현존량은 $0.28{\times}10^4cells\;L^{-1}$로 낮았으며, Chaetoceros spp., Guinardia striata, Rhizosolenia spp., Skeletonema spp.가 출현하였다. 추계는 57종으로 가장 다양한 식물플랑크톤이 출현하였으며, 전 수층의 평균 식물플랑크톤 현존량은 $4.86{\times}10^4cells\;L^{-1}$, 규조류 Pseudo-nitzschia spp.가 크게 번무하여 4계절 중 가장 높은 생산력을 보였다. 또한, 종조성에서 특이적으로 열대 지표종인 와편모조류 Amphisolenia sp.와 Ornithocercus magnificus가 출현하여, 쓰시마난류가 추계에 강하게 유입된 것을 시사할 뿐만 아니라, 이들의 출현으로 과거에 비해 해류와 기후가 변화한 사실을 유추해 볼 수 있다. 따라서 독도의 지속가능한 이용을 위해서 독도를 중심으로 지속적인 물리-화학적 연구와 함께 생물학적 연구를 실시하여 독도 연안 생태계 변화 추이를 장기간 관찰할 필요가 있다.

Keywords

References

  1. Anderson DM, PM Glibert and JM Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25:704-726. https://doi.org/10.1007/BF02804901
  2. Baek SH, M Lee and YB Kim. 2018. Spring phytoplankton community response to an episodic windstorm event in oligotrophic waters offshore from the Ulleungdo and Dokdo islands, Korea. J. Sea Res. 132:1-14. https://doi.org/10.1016/j.seares.2017.11.003
  3. Baek SH and YB Kim. 2018. Influences of coastal upwelling and time lag on primary production in offshore waters of Ulleungdo-Dokdo during spring 2016. Korean J. Environ. Biol. 36:156-164. https://doi.org/10.11626/KJEB.2018.36.2.156
  4. Chiba S, Y Hirota, S Hasegawa and T Saino. 2005. North-south contrasts in decadal scale variations in lower trophic-level ecosystems in the Japan Sea. Fish. Oceanogr. 14:401-412. https://doi.org/10.1111/j.1365-2419.2005.00355.x
  5. Guinder VA, CA Popovich, JC Molinero and J Marcovecchio. 2013. Phytoplankton summer bloom dynamics in the Bahia Blanca Estuary in relation to changing environmental conditions. Cont. Shelf Res. 52:150-158. https://doi.org/10.1016/j.csr.2012.11.010
  6. Harvey HW. 1955. The Chemistry and Fertility of Sea Waters. Cambridge University Press. Cambridge.
  7. Hyun JH, D Kim, CW Shin, JH Noh, EJ Yang, JS Mok, SH Kim, HC Kim and S Yoo. 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea. Aquat. Microb. Ecol. 54:45-54. https://doi.org/10.3354/ame01280
  8. Jung JA, EY Jo, JH Cha, MK Kim and KT Kim. 2000. Seasonal variations of physico-chemical characteristics and phytoplanktonic pigments in coastal sea water from Ullungdo and Dokdo Islands. Algae 16:325-335.
  9. Jung JA, EY Jo, JH Cha, MK Kim and KT Kim. 2001. Community structures of phytoplanktons according to environmental factors in the coastal waters of Ullungdo and Tokdo Islands. Algae 16:325-325.
  10. Jung MM and HS Kim. 2013. Morphology of four dinoflagellate species (Amphisolenia and Triposolenia) newly recorded from Korea. J. Kor. Soc. Fish. Mar. Edu. 25:1239-1244.
  11. Kim DS, KH Kim, JH Shim and SJ Yoo. 2007. The effect of anticyclonic eddy on nutrients and chlorophyll during spring and summer in the Ulleung Basin, East Sea. J. Korean Ocean. Soc. 12:280-286.
  12. Kim HS, MM Jung and JB Lee. 2008. The Korean Peninsula warming based on appearance trend of tropical dinoflagellate species, genus Ornithocercus. The Sea 13:303-307.
  13. Kim K, KR Kim, DH Min, Y Volkov, JH Yoon and M Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans? Geophys. Res. Lett. 28:3293-3296. https://doi.org/10.1029/2001GL013078
  14. Kim MG. 2011. Ecosystem changes of environmental condition and ecosystem in coastal area of Dokdo under climate change in Korea. Pro. Kor. Soc. Env. Eco. Con. 2:6-13.
  15. Kim MK and JK Shin. 2007. Variations of water environments and species compositions of microalgae during summer in the coast of Dokdo, Korea. Algae 22:193-199. https://doi.org/10.4490/ALGAE.2007.22.3.193
  16. Kim MK and JW Park. 2009. Water environments and species compositions of phytoplankton at the depths during summer in the coast of Dokdo. Korean J. Environ. Biol. 27:48-57.
  17. Kim S and SK Kang. 2000. Ecological variations and El Nino effects off the southern coast of the Korean Peninsula during the last three decades. Fish Oceanogr. 9:239-247. https://doi.org/10.1046/j.1365-2419.2000.00142.x
  18. KIOST. 2017. A sustainable research and development of Dokdo. SCPG49880-11410-5. Korea Institute of Ocean Science and Technology, Ministry of Oceans and Fisheries, Seoul, Korea.
  19. KORDI. 2000. Baseline studies of Dok Island ecosystem. BSPM 99045-00-1282-6. Korea Ocean Research and Development Institute, Ministry of Oceans and Fisheries, Seoul, Korea.
  20. Lee MJ, D Kim, YO Kim, M Sohn, CH Moon and SH Baek. 2016. Seasonal phytoplankton growth and distribution pattern by environmental factor changes in inner and outer bay of Ulsan, Korea. The Sea 21:24-35. https://doi.org/10.7850/jkso.2016.21.1.24
  21. Lee M and SH Baek. 2017. Changes in marine environmental factors and phytoplankton community composition observed via short-term investigation in a harbor in the eastern part of the south sea of Korea. Korean Soc. Mar. Environ. Saf. 25:669-676.
  22. Lee M, BS Park and SH Baek. 2018. Tidal influences on biotic and abiotic factors in the Seomjin River estuary and Gwangyang Bay, Korea. Estuaries Coasts 41:1-17.
  23. Lim YK and SH Baek. 2017. Seasonal variation of primary producer phytoplankton community in the vicinity of the oyster farming area between Tongyeong-Saryang Island. Korean J. Environ. Biol. 35:492-500. https://doi.org/10.11626/KJEB.2017.35.4.492
  24. Liu G and F Chai. 2009. Seasonal and interannual variation of physical and biological processes during 1994-2001 in the Sea of Japan/East Sea: a three-dimensional physical-biogeochemical modeling study. J. Mar. Syst. 78:265-277. https://doi.org/10.1016/j.jmarsys.2009.02.011
  25. Oh SJ, JS Park, YH Yoon and HS Yang. 2009. Variation analysis of phytoplankton communities in northern Gamak Bay, Korea. J. Korean Soc. Mar. Environ. Energy 15:329-338.
  26. Park JS, YH Yoon and SJ Oh. 2009. Variation characteristics of phytoplankton community in the mouth parts of Gamak Bay, Southern Korea. Korean J. Environ. Biol. 27:205-215.
  27. Parsons TR. 2013. A Manual of Chemical & Biological Methods for Seawater Analysis. Elsevier.
  28. Rho TK, YB Kim, JI Park, YW Lee, DH Im, DJ Kang and HJ Park. 2010. Plankton community response to physico -chemical forcing in the Ulleung Basin, East Sea during summer 2008. Ocean Polar Res. 32:269-289. https://doi.org/10.4217/OPR.2010.32.3.269
  29. Shannon CE and W Wiener. 1949. The Mathematical Theory of Communication. University of Illinois Press, Chicago. p. 125.
  30. Thompson PA, PI Bonham and KM Swadling. 2008. Phytoplankton blooms in the Huon Estuary, Tasmania: top -down or bottom-up control? J. Plankton Res. 30:735-753. https://doi.org/10.1093/plankt/fbn044
  31. Yamada K, J Ishizaka, S Yoo, HC Kim and S Chiba. 2004. Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Prog. Oceanogr. 61:193-211. https://doi.org/10.1016/j.pocean.2004.06.001
  32. Yoo S and J Park. 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan? J. Mar. Syst. 78:301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014