DOI QR코드

DOI QR Code

Effects of pH of soil medium on the growth and nutrient absorption of cultivated and native Chinese chives plants

토양배지의 pH가 재배 및 자생 부추류의 생육과 양분흡수에 미치는 영향

  • Ku, Hyun-Hwoi (Climate Change Research Center, Hankyong National University) ;
  • Lee, Sang Gak (Climate Change Research Center, Hankyong National University) ;
  • Chiang, Mae-Hee (Department of Horticulture, Biotechnology & Landscape Architecture, Seoul Women's University) ;
  • Choi, Jong-Lak (Climate Change Research Center, Hankyong National University) ;
  • Lee, Sang-Eun (Climate Change Research Center, Hankyong National University)
  • 구현회 (국립한경대학교 기후변화연구센터) ;
  • 이상각 (국립한경대학교 기후변화연구센터) ;
  • 장매희 (서울여자대학교 원예생명조경학과) ;
  • 최종락 (국립한경대학교 기후변화연구센터) ;
  • 이상은 (국립한경대학교 기후변화연구센터)
  • Received : 2018.12.27
  • Accepted : 2019.02.15
  • Published : 2019.03.31

Abstract

This experiment was conducted to investigate the effects of pH on the mineral nutrient uptake and growth of the four Chinese chives species. The Chinese chives species used in the experiment were the cultivated species grown in the farm (cultivated Allium tuberosum) and three wild species of wild Allium tuberosum, A. thunbergii and A. senescens. The pH levels of soil medium were set to be 4.5, 6.5, and 7.5. Fresh weight(FW) of cultivated A. tuberosum was highest at all pH levels. The increase of soil pH increased the FW of the wild A. tuberosum and A. thunbergii, but no difference was noted for the A. tuberosum and A. senescens. Plant height was higher in the order of wild A. tuberosum, A. thunbergii, and cultivated A. tuberosum and A. thunbergii. Notably plant height of the wild A. tuberosum increased significantly by the pH increase. The Zn content of the wild A. tuberosum was shown to be significantly higher than that of the other species and increased with the increase of soil pH. This indicates that there is a close relationship between the plant height and Zn content in Chinese chives plant. Principal component analysis for characterizing closely related A. species using the factors of plant growth and amounts of nutrients uptake showed that the cultivated A. and wild A. tuberosum were in the $4^{th}$ quadrant of the graph which are classified as the same species, while A. senescens and thunbergii was in $1^{st}$ and $3^{rd}$ quadrant indicating different species, respectively.

본 실험은 토양배지의 pH 수준에 따른 4가지 부추종의 무기양분 흡수와 생육에 미치는 영향을 구명하고자 육묘포트에서 재배실험을 실시하였다. 실험에 사용된 부추종은 농가에서 재배하고 있는 재배부추와 야생하는 야생부추, 산부추, 두메부추를 자생지에서 수집한 것을 사용하였다. 배양토의 pH 수준은 5.5, 6.5, 7.5로 3수준이었다. 실험의 결과는 다음과 같다. 1. 재배부추는 모든 pH 수준에서 타 부추종들에 비하여 생체중이 가장 컸다. 한편 토양 배지 pH 수준의 증가는 야생부추와 산부추의 생체중을 증가시켰던 반면, 일반부추와 두메부추의 생체중에는 영향을 미치지 못하였다. 2. 초장은 전체 pH 조건에서 야생부추, 산부추>재배부추>두메부추 순으로 컸다. 초장은 야생부추와 산부추가 일반부추에 비해 월등히 컸던 반면 생체중은 그 반대이었는데, 그것은 각 부추종의 형태적 차이 때문으로 판단되었다. 한편 타 부추종과 달리 야생부추의 초장은 pH 증가에 따라 통계적으로 유의성 있게 증가하였다. 이것은 본 실험에 사용하기 위하여 채취한 야생부추 자생지의 토양특성과 관련이 있는 것으로 판단되었다. 3. 야생부추의 Zn 함량은 타 부추종에 비해 월등히 높았으며, 배지 pH 수준이 증가할수록 증가하였다. 이는 야생부추의 초장이 타 부추종에 비해 크고, pH 증가에 따라 유의성이 있게 증가하는 원인 중의 하나가 식물체내 Zn 함량 증가에 있다는 것을 나타낸다. 4. 생육량과 무기양분흡수량에 의한 주성분 분석은 부추류의 근연관계를 밝히는데 유용하였다.

Keywords

References

  1. Bernhard RA. 1970. Chemotaxonomy: Distribution studies of sulfur compounds in Allium. Phytochemistry 9:2019-2027. https://doi.org/10.1016/S0031-9422(00)85355-8
  2. Brady NC and RR Weil. 1990. The Nature and Properties of Soils, 10th Edition. Macmillan publishing company, NY.
  3. Choi JS, JY Kim, JH Lee, HS Young and TW Lee. 1992. Isolation of adenosine and free amino acid composition from the leaves of Allium tuberosum. J. Korean Soc. Food Nutr. 21:286-290.
  4. Chung HD and SJ Youn. 1996. The physioecological characteristics and productivity of the Korean native Allium tuberosum Rottler. J. Korean Soc. Hort. Sci. 37:495-504.
  5. Coleman JE. 1992. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61:897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341
  6. Gambrell RP and WH Jr. Patrick. 1978. Chemical and microbiological properties of anaerobic soils and sediments. pp. 375-423. In Plant Life in Anaerobic Environments (Hook DD and RM Crawford, eds.). Ann Arbor Science, Ann Arbor.
  7. GARES. 2018. Analytical methods for soil, plant, compost, liquid fertilizer, nursery materials, and irrigation water. Gyeonggi-do Agricultural Research & Extension Services. Taean Publisher.
  8. Hinsinger P, C Plassard, C Tang and B Jaillard. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43-59. https://doi.org/10.1023/A:1022371130939
  9. IRRI. 2013. Statistical tool for agricultural research. Version 2.0.1. International Rice Research Institute. Los Banos, Philippines.
  10. Kemmou S, JE Dafir, M Wartiti and M Taoufik. 2006. Seasonal variations and potential mobility of sediment phosphorus in the Al Massira reservoir, Morocco. Water Qual. Res. J. Can. 41:427-436. https://doi.org/10.2166/wqrj.2006.046
  11. Khalid N, I Ahmed, MSZ Latif, T Rafique and SA Fawad. 2014. Comparison of antimicrobial activity, phytochemical profile and minerals composition of Garlic Allium sativum and Allium tuberosum. J. Korean Soc. Appl. Biol. Chem. 57:311-317. https://doi.org/10.1007/s13765-014-4021-4
  12. Kim GH. 2006. Soil Science. Hyangmunsa, Seoul. Kim WB. 1995. Crop cultivation -Protected cultivation situation and technique of wild vegetable. Korean Res. Soc. Protected Hort. 8:71-80.
  13. KOSIS. 2017. Annual status of Greenhouse crop production in 2017. Korean statistical information service, Statistics Korea.
  14. Laanbroek HJ. 1990. Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquat. Bot. 38:109-125. https://doi.org/10.1016/0304-3770(90)90101-P
  15. Lee TB. 2006. Coloured Flora of Korea. Hyangmunsa, Seoul. p. 781.
  16. Marschner H. 1995. Mineral Nutrition of Higher Plants, 2nd ed. Academic press, London.
  17. Park ER, JO Jo, SM Kim, MY Lee and KS Kim. 1998. Volatile flavor components of Leek (Allium tuberosum Rottler). J. Korean Soc. Food Sci. Nutr. 27:563-567.
  18. Park JH. 2010. Phytochemical constituents and biological activity of Scilla sinensis Merr. and Allium thunbergii G. Don. PhD. Dissertation. Sungkyunkwan University, Seoul.
  19. Phillips IR. 1998. Phosphorus availability and sorption under alternating waterlogged and drying conditions. Commun. Soil Sci. Plant 29:3045-3059. https://doi.org/10.1080/00103629809370175
  20. Ponnamperuma FN. 1972. The chemistry of submerged soils. Adv. Agron. 24:29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  21. Sallade YE and JT Sims. 1997. Phosphorus transformations in the sediments of Delaware's agricultural drainageways: II. Effect of reducing conditions on phosphorus release. J. Environ. Qual. 26:1579-1588. https://doi.org/10.2134/jeq1997.00472425002600060018x
  22. Tsui C. 1948. The role of zinc in auxin synthesis in the tomato plant. Am. J. Bot. 35:172-179. https://doi.org/10.1002/j.1537-2197.1948.tb05203.x
  23. Vadas PA and JT Sims. 1998. Redox status, poultry litter, and phosphorus solubility in Atlantic Coastal plain soils. Soil Sci. Soc. Am. J. 62:1025-1034. https://doi.org/10.2136/sssaj1998.03615995006200040025x
  24. Vallee BL and DS Auld. 1990. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochem. 29:5647-5659. https://doi.org/10.1021/bi00476a001
  25. Vallee BL and KH Falchuk. 1993. The biochemical basis of zinc. Physiol. Rev. 73:79-118. https://doi.org/10.1152/physrev.1993.73.1.79