DOI QR코드

DOI QR Code

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi Suk (Korea Nanobiotechnology Center, Pusan National University) ;
  • Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2019.03.25
  • Accepted : 2019.06.03
  • Published : 2019.08.28

Abstract

The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Keywords

References

  1. Gostin LO. 2004. Pandemic Influenza: public health preparedness for the next global health emergency. J. Law Med. Ethics 32: 565-573. https://doi.org/10.1111/j.1748-720X.2004.tb01962.x
  2. Killip MJ, Fodor E, Randall RE. 2015. Influenza virus activation of the interferon system. Virus Res. 209: 11-22. https://doi.org/10.1016/j.virusres.2015.02.003
  3. Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, Garcia-Sastre A, et al. 2009. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc. Natl. Acad. Sci. USA 106: 3455-3460. https://doi.org/10.1073/pnas.0813234106
  4. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJ, Matsuoka Y, Tomita Y, et al. 2014. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 16: 795-805. https://doi.org/10.1016/j.chom.2014.11.002
  5. Hause BM, Collin EA, Liu R, Huang B, Sheng Z, Lu W, et al. 2014. Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5: e00031-00014.
  6. Palese P, Schulman JL. 1976. Mapping of the influenza virus genome: identification of the hemagglutinin and the neuraminidase genes. Proc. Natl. Acad. Sci. USA 73: 2142-2146. https://doi.org/10.1073/pnas.73.6.2142
  7. McGeoch D, Fellner P, Newton C. 1976. Influenza virus genome consists of eight distinct RNA species. Proc. Natl. Acad. Sci. USA 73: 3045-3049. https://doi.org/10.1073/pnas.73.9.3045
  8. Dou D, Revol R, Ostbye H, Wang H, Daniels R. 2018. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front. Immunol. 9: 1581. https://doi.org/10.3389/fimmu.2018.01581
  9. Marc D. 2014. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95: 2594-2611. https://doi.org/10.1099/vir.0.069542-0
  10. Plant EP, Ilyushina NA, Sheikh F, Donnelly RP, Ye Z. 2017. Influenza virus NS1 protein mutations at position 171 impact innate interferon responses by respiratory epithelial cells. Virus Res. 240: 81-86. https://doi.org/10.1016/j.virusres.2017.07.021
  11. Alonso-Caplen FV, Krug RM. 1991. Regulation of the extent of splicing of influenza virus NS1 mRNA: role of the rates of splicing and of the nucleocytoplasmic transport of NS1 mRNA. Mol. Cell Biol. 11: 1092-1098. https://doi.org/10.1128/MCB.11.2.1092
  12. Skorko R, Summers DF, Galarza JM. 1991. Influenza A virus in vitro transcription: roles of NS1 and NP proteins in regulating RNA synthesis. Virology 180: 668-677. https://doi.org/10.1016/0042-6822(91)90080-U
  13. Ehrhardt C, Wolff T, Ludwig S. 2007. Activation of phosphatidylinositol 3-kinase signaling by the nonstructural NS1 protein is not conserved among type A and B influenza viruses. J. Virol. 81: 12097-12100. https://doi.org/10.1128/JVI.01216-07
  14. Wilkins C, Gale M, Jr. 2010. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22: 41-47. https://doi.org/10.1016/j.coi.2009.12.003
  15. Carrillo B, Choi JM, Bornholdt ZA, Sankaran B, Rice AP, Prasad BV. 2014. The influenza A virus protein NS1 displays structural polymorphism. J. Virol. 88: 4113-4122. https://doi.org/10.1128/JVI.03692-13
  16. Salahuddin P, Khan AU. 2010. Structural and functional analysis of NS1 and NS2 proteins of H1N1 subtype. Genomics Proteomics Bioinformatics 8: 190-199. https://doi.org/10.1016/S1672-0229(10)60021-6
  17. Righetto I, Milani A, Cattoli G, Filippini F. 2014. Comparative structural analysis of haemagglutinin proteins from type A influenza viruses: conserved and variable features. BMC Bioinformatics 15: 363. https://doi.org/10.1186/s12859-014-0363-5
  18. Mair CM, Ludwig K, Herrmann A, Sieben C. 2014. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta. 1838: 1153-1168. https://doi.org/10.1016/j.bbamem.2013.10.004
  19. Zheng W, Tao YJ. 2013. Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS Lett. 587: 1206-1214. https://doi.org/10.1016/j.febslet.2013.02.048
  20. Hamilton BS, Whittaker GR, Daniel S. 2012. Influenza virusmediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4: 1144-1168. https://doi.org/10.3390/v4071144
  21. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, et al. 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458: 914-918. https://doi.org/10.1038/nature07745
  22. Te Velthuis AJ, Fodor E. 2016. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14: 479-493. https://doi.org/10.1038/nrmicro.2016.87
  23. York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E. 2013. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc. Natl. Acad. Sci. USA 110: E4238-4245. https://doi.org/10.1073/pnas.1315068110
  24. Bui M, Wills EG, Helenius A, Whittaker GR. 2000. Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. J. Virol. 74: 1781-1786. https://doi.org/10.1128/JVI.74.4.1781-1786.2000
  25. O'Neill RE, Talon J, Palese P. 1998. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J. 17: 288-296. https://doi.org/10.1093/emboj/17.1.288
  26. Nayak DP, Balogun RA, Yamada H, Zhou ZH, Barman S. 2009. Influenza virus morphogenesis and budding. Virus Res. 143: 147-161. https://doi.org/10.1016/j.virusres.2009.05.010
  27. Garaigorta U, Falcon AM, Ortin J. 2005. Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles. J. Virol. 79: 15246-15257. https://doi.org/10.1128/JVI.79.24.15246-15257.2005
  28. Price GE, Gaszewska-Mastarlarz A, Moskophidis D. 2000. The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J. Virol. 74: 3996-4003. https://doi.org/10.1128/JVI.74.9.3996-4003.2000
  29. Hatada E, Saito S, Okishio N, Fukuda R. 1997. Binding of the influenza virus NS1 protein to model genome RNAs. J. Gen. Virol. 78 (Pt 5): 1059-1063. https://doi.org/10.1099/0022-1317-78-5-1059
  30. Marion RM, Aragon T, Beloso A, Nieto A, Ortin J. 1997. The N-terminal half of the influenza virus NS1 protein is sufficient for nuclear retention of mRNA and enhancement of viral mRNA translation. Nucleic Acids Res. 25: 4271-4277. https://doi.org/10.1093/nar/25.21.4271
  31. Hale BG, Randall RE, Ortin J, Jackson D. 2008. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89: 2359-2376. https://doi.org/10.1099/vir.0.2008/004606-0
  32. Melen K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM, et al. 2007. Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J. Virol. 81: 5995-6006. https://doi.org/10.1128/JVI.01714-06
  33. Nemeroff ME, Qian XY, Krug RM. 1995. The influenza virus NS1 protein forms multimers in vitro and in vivo. Virology 212: 422-428. https://doi.org/10.1006/viro.1995.1499
  34. Chien CY, Xu Y, Xiao R, Aramini JM, Sahasrabudhe PV, Krug RM, et al. 2004. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode. Biochemistry 43: 1950-1962. https://doi.org/10.1021/bi030176o
  35. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, et al. 2000. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 74: 7989-7996. https://doi.org/10.1128/JVI.74.17.7989-7996.2000
  36. Hale BG, Jackson D, Chen YH, Lamb RA, Randall RE. 2006. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc. Natl. Acad. Sci. USA 103: 14194-14199. https://doi.org/10.1073/pnas.0606109103
  37. Kuo RL, Zhao C, Malur M, Krug RM. 2010. Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-beta transcription. Virology 408: 146-158. https://doi.org/10.1016/j.virol.2010.09.012
  38. Huang X, Zheng M, Wang P, Mok BW, Liu S, Lau SY, et al. 2017. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat. Commun. 8: 14751. https://doi.org/10.1038/ncomms14751
  39. Cheng A, Wong SM, Yuan YA. 2009. Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell Res. 19: 187-195. https://doi.org/10.1038/cr.2008.288
  40. Drappier M, Michiels T. 2015. Inhibition of the OAS/RNase L pathway by viruses. Curr. Opin. Virol. 15: 19-26. https://doi.org/10.1016/j.coviro.2015.07.002
  41. Tisoncik JR, Billharz R, Burmakina S, Belisle SE, Proll SC, Korth MJ, et al. 2011. The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigenpresentation and immune-proteasome pathways. J. Gen. Virol. 92: 2093-2104. https://doi.org/10.1099/vir.0.032060-0
  42. Li S, Min JY, Krug RM, Sen GC. 2006. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349: 13-21. https://doi.org/10.1016/j.virol.2006.01.005
  43. Patino C, Haenni AL, Urcuqui-Inchima S. 2015. NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 108: 20-24. https://doi.org/10.1016/j.biochi.2014.10.022
  44. Li T, Li X, Zhu W, Wang H, Mei L, Wu S, et al. 2016. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Lett. 590: 2797-2810. https://doi.org/10.1002/1873-3468.12311
  45. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5: 439-449. https://doi.org/10.1016/j.chom.2009.04.006
  46. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
  47. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82: 335-345. https://doi.org/10.1128/JVI.01080-07
  48. Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, et al. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J. Immunol. 178: 3368-3372. https://doi.org/10.4049/jimmunol.178.6.3368
  49. Husser L, Alves MP, Ruggli N, Summerfield A. 2011. Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference. Virus Res. 159: 9-16. https://doi.org/10.1016/j.virusres.2011.04.005
  50. Karpala AJ, Stewart C, McKay J, Lowenthal JW, Bean AG. 2011. Characterization of chicken Mda5 activity: regulation of IFN-beta in the absence of RIG-I functionality. J. Immunol. 186: 5397-5405. https://doi.org/10.4049/jimmunol.1003712
  51. Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N. 2012. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J. Virol. 86: 705-717. https://doi.org/10.1128/JVI.00742-11
  52. Chen G, Liu CH, Zhou L, Krug RM. 2014. Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. Cell Host Microbe 15: 484-493. https://doi.org/10.1016/j.chom.2014.03.002
  53. Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. 1998. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol. Cell. 1: 991-1000. https://doi.org/10.1016/S1097-2765(00)80099-4
  54. Chen Z, Li Y, Krug RM. 1999. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J. 18: 2273-2283. https://doi.org/10.1093/emboj/18.8.2273
  55. Aragon T, de la Luna S, Novoa I, Carrasco L, Ortin J, Nieto A. 2000. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol. Cell Biol. 20: 6259-6268. https://doi.org/10.1128/MCB.20.17.6259-6268.2000
  56. Walkiewicz MP, Basu D, Jablonski JJ, Geysen HM, Engel DA. 2011. Novel inhibitor of influenza non-structural protein 1 blocks multi-cycle replication in an RNase L-dependent manner. J. Gen. Virol. 92: 60-70. https://doi.org/10.1099/vir.0.025015-0
  57. Basu D, Walkiewicz MP, Frieman M, Baric RS, Auble DT, Engel DA. 2009. Novel influenza virus NS1 antagonists block replication and restore innate immune function. J. Virol. 83: 1881-1891. https://doi.org/10.1128/JVI.01805-08
  58. Twu KY, Noah DL, Rao P, Kuo RL, Krug RM. 2006. The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target. J. Virol. 80: 3957-3965. https://doi.org/10.1128/JVI.80.8.3957-3965.2006
  59. Kleinpeter AB, Jureka AS, Falahat SM, Green TJ, Petit CM. 2018. Structural analyses reveal the mechanism of inhibition of influenza virus NS1 by two antiviral compounds. J. Biol. Chem. 293: 14659-14668. https://doi.org/10.1074/jbc.RA118.004012
  60. Min JY, Krug RM. 2006. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA 103: 7100-7105. https://doi.org/10.1073/pnas.0602184103

Cited by

  1. Development and Effects of Influenza Antiviral Drugs vol.26, pp.4, 2019, https://doi.org/10.3390/molecules26040810
  2. Dual R108K and G189D Mutations in the NS1 Protein of A/H1N1 Influenza Virus Counteract Host Innate Immune Responses vol.13, pp.5, 2021, https://doi.org/10.3390/v13050905
  3. The Crossroads between Host Copper Metabolism and Influenza Infection vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115498
  4. Acetylation, Methylation and Allysine Modification Profile of Viral and Host Proteins during Influenza A Virus Infection vol.13, pp.7, 2019, https://doi.org/10.3390/v13071415
  5. Investigation on the Binding Properties of N1 Neuraminidase of H5N1 Influenza Virus in Complex with Fluorinated Sialic Acid Analog Compounds-a Study by Molecular Docking and Molecular Dynamics Simulat vol.52, pp.1, 2022, https://doi.org/10.1007/s13538-021-01009-z