DOI QR코드

DOI QR Code

Middle East Respiratory Syndrome Coronavirus-Encoded Accessory Proteins Impair MDA5-and TBK1-Mediated Activation of NF-κB

  • Lee, Jeong Yoon (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University) ;
  • Bae, Sojung (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University)
  • Received : 2019.08.01
  • Accepted : 2019.08.13
  • Published : 2019.08.28

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B ($NF-{\kappa}B$) activation. Interestingly, the inhibition of $NF-{\kappa}B$ by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiation-associated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of $NF-{\kappa}B$ while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated $NF-{\kappa}B$ activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of $NF-{\kappa}B$ signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of $NF-{\kappa}B$-mediated antiviral immune responses.

Keywords

References

  1. Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. 2017. Further evidence for bats a s the evolutionary source of Middle East respiratory syndrome coronavirus. MBio 8:pii: e00373-17.
  2. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. 2017. Global patterns in coronavirus diversity. Virus Evol. 3: vex012. https://doi.org/10.1093/ve/vex012
  3. Banerjee A, Falzarano D, Rapin N, Lew J, Misra V. 2019. Interferon regulatory factor 3-mediated signaling limits Middle-East respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat. Viruses 11(2). pii: E152.
  4. Goldstein SA, Weiss SR. 2017. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Res 6: 1628. https://doi.org/10.12688/f1000research.11827.1
  5. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13: e1006698. https://doi.org/10.1371/journal.ppat.1006698
  6. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679. https://doi.org/10.1126/science.1118391
  7. Yu P, Hu B, Shi ZL, Cui J. 2019. Geographical structure of bat SARS-related coronaviruses. Infect. Genet. Evol. 69: 224-229. https://doi.org/10.1016/j.meegid.2019.02.001
  8. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, et al. 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4: e00737-00713.
  9. Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. 2018. Fatal swine a cute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556: 255-258. https://doi.org/10.1038/s41586-018-0010-9
  10. Hayman DT. 2016. Bats as viral reservoirs. Annu. Rev. Virol. 3: 77-99. https://doi.org/10.1146/annurev-virology-110615-042203
  11. Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753. https://doi.org/10.1098/rspb.2012.2753
  12. Maxmen A. 2017. Bats are global reservoir for deadly coronaviruses. Nature 546: 340. https://doi.org/10.1038/nature.2017.22137
  13. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. 2012. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 17(39). pii: 20285.
  14. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814-1820. https://doi.org/10.1056/NEJMoa1211721
  15. van den Brand JM, Smits SL, Haagmans BL. 2015. Pathogenesis of Middle East respiratory syndrome coronavirus. J. Pathol. 235: 175-184. https://doi.org/10.1002/path.4458
  16. Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr., Graham RL, et al. 2017. MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio 8(4). pii: e00665-17.
  17. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of Middle East respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.0905.05061
  18. Nabel GJ, Verma IM. 1993. Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev. 7: 2063. https://doi.org/10.1101/gad.7.11.2063
  19. Silverman N, Maniatis T. 2001. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15: 2321-2342. https://doi.org/10.1101/gad.909001
  20. Ghosh S, May MJ, Kopp EB. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  21. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. 1995. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9: 2723-2735. https://doi.org/10.1101/gad.9.22.2723
  22. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. 2002. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277: 10842-10851. https://doi.org/10.1074/jbc.M112475200
  23. Huang TT, Kudo N, Yoshida M, Miyamoto S. 2000. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc. Natl. Acad. Sci. USA 97: 1014-1019. https://doi.org/10.1073/pnas.97.3.1014
  24. Huang TT, Miyamoto S. 2001. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Mol. Cell Biol. 21: 4737-4747. https://doi.org/10.1128/MCB.21.14.4737-4747.2001
  25. Li Q, Verma IM. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2: 725-734. https://doi.org/10.1038/nri910
  26. Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, Garcia-Sastre A, et al. 2018. MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection. PLoS Pathog. 14: e1006838. https://doi.org/10.1371/journal.ppat.1006838
  27. Islam MN, Lee KW, Yim HS, Lee SH, Jung HC, Lee JH, et al. 2017. Optimizing T4 DNA polymerase conditions enhances the efficiency of one-step sequence- and ligation-independent cloning. Biotechniques 63: 125-130.
  28. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, et al. 2012. One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 78: 5440-5443. https://doi.org/10.1128/AEM.00844-12
  29. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis Evirus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  30. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  31. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
  32. Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372. https://doi.org/10.1038/s41598-019-38870-7
  33. Sen R, Baltimore D. 2006. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986. 46: 705-716.
  34. Mauxion F, Pray MG, Sen R. 1990. Multiple nuclear factors interact with sequences within the J beta 2-C beta 2 intron of the murine T cell receptor beta-chain gene. J. Immunol. 145: 1577-1582.
  35. Sen R, Baltimore D. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
  36. Hayden MS, West AP, Ghosh S. 2006. SnapShot: NF-kappaB signaling pathways. Cell 127: 1286-1287.
  37. Hayden MS, Ghosh S. 2004. Signaling to NF-kappaB. Genes Dev. 18: 2195-2224. https://doi.org/10.1101/gad.1228704
  38. Shin CH, Choi DS. 2019. Essential roles for the non-canonical IkappaB kinases in linking inflammation to cancer, obesity, and diabetes. Cells 8.
  39. Vallabhapurapu S, Karin M. 2009. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27: 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641
  40. Karin M, Delhase M. 2000. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin. Immunol. 12: 85-98. https://doi.org/10.1006/smim.2000.0210
  41. Sun SC. 2017. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 17: 545-558. https://doi.org/10.1038/nri.2017.52
  42. Sun SC. 2011. Non-canonical NF-kappaB signaling pathway. Cell Res. 21: 71-85. https://doi.org/10.1038/cr.2010.177
  43. Peters RT, Liao SM, Maniatis T. 2000. IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Mol. Cell 5: 513-522. https://doi.org/10.1016/S1097-2765(00)80445-1
  44. Pomerantz JL, Baltimore D. 1999. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18: 6694-6704. https://doi.org/10.1093/emboj/18.23.6694
  45. Taylor SL, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS. 2009. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alphainduced activation of nuclear factor kappa B. J. Virol. 83: 1271-1279. https://doi.org/10.1128/JVI.00986-08
  46. Ye J, Chen Z, Li Y, Zhao Z, He W, Zohaib A, et al. 2017. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-kappaB. J. Virol. 91.
  47. Xu H, Su C, Pearson A, Mody CH, Zheng C. 2017. Herpes simplex virus 1 UL24 abrogates the DNA sensing signal pathway by inhibiting NF-kappaB activation. J. Virol. 91.
  48. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  49. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  50. Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Muller H, et al. 2017. The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog. 13: e1006286.
  51. Smits SL, de Lang A, vanden Brand JM, Leijten LM, van IWF, Eijkemans MJ, et al. 2010. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 6: e1000756. https://doi.org/10.1371/journal.ppat.1000756
  52. Versteeg GA, Garcia-Sastre A. 2010. Viral tricks to grid-lock the type I interferon system. Curr. Opin. Microbiol. 13: 508-516. https://doi.org/10.1016/j.mib.2010.05.009

Cited by

  1. Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1909.09017
  2. Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly Antagonize the Interferon-β Signaling Pathway vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1910.10014
  3. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway vol.57, pp.12, 2019, https://doi.org/10.1007/s12275-019-9478-8
  4. Middle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors by a Differential Mechanism vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1911.11024
  5. Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis vol.30, pp.3, 2020, https://doi.org/10.4014/jmb.1910.10055
  6. PEDV ORF3 Independently Regulates IκB Kinase β-Mediated NF-κB and IFN-β Promoter Activities vol.9, pp.5, 2019, https://doi.org/10.3390/pathogens9050376
  7. Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses vol.30, pp.8, 2019, https://doi.org/10.4014/jmb.2006.06006
  8. Middle East Respiratory Syndrome Coronavirus ORF8b Accessory Protein Suppresses Type I IFN Expression by Impeding HSP70-Dependent Activation of IRF3 Kinase IKKε vol.205, pp.6, 2019, https://doi.org/10.4049/jimmunol.1901489
  9. An immune epigenetic insight to COVID-19 infection vol.13, pp.6, 2019, https://doi.org/10.2217/epi-2020-0349
  10. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity vol.13, pp.4, 2019, https://doi.org/10.3390/v13040560
  11. Genetically Engineered Live-Attenuated Middle East Respiratory Syndrome Coronavirus Viruses Confer Full Protection against Lethal Infection vol.12, pp.2, 2019, https://doi.org/10.1128/mbio.00103-21
  12. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors vol.10, pp.4, 2019, https://doi.org/10.3390/pathogens10040448
  13. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice vol.118, pp.43, 2021, https://doi.org/10.1073/pnas.2111075118