DOI QR코드

DOI QR Code

저온 소성 굴 패각의 피복에 의한 연안 오염 퇴적물의 성상 변화에 관한 연구

Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature

  • Kim, Hyung-Chul (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Woo, Hee-Eun (Department of Ocean Engineering Pukyong National University) ;
  • Jeong, Ilwon (Department of Ocean Engineering Pukyong National University) ;
  • Oh, Seok-Jin (Department of Oceanography, Pukyong National University) ;
  • Lee, Seong-Ho (Eco Technology) ;
  • Kim, Kyunghoi (Department of Ocean Engineering Pukyong National University)
  • 투고 : 2018.12.31
  • 심사 : 2019.02.25
  • 발행 : 2019.02.28

초록

본 연구에서는 저온 소성 굴 패각의 재활용을 위한 기초적 연구로서 메조코즘 실험을 통해 저온 소성 굴 패각의 피복에 따른 연안 오염 퇴적물의 성상 변화를 조사하였다. 이를 위해 $350^{\circ}C$에서 소성시킨 굴 패각을 연안 오염 퇴적물에 피복하여 직상수와 간극수의 성상변화를 분석하는 메조코즘 실험을 수행하였다. 실험 결과, 굴 패각의 피복에 의해 수층과 퇴적층이 분리되었기 때문에 직상수의 산화환원전위(ORP) 증가 및 DIN 중의 $NH_3-N$의 비율의 감소가 실험구에서 관측되었다. 실험구의 DIP의 농도는 대조구와 비교하여 유의한 차이를 확인하기 어려웠다. 굴 패각의 피복에 의한 퇴적물의 총유기탄소(TOC)는 감소하였으며, 산휘발성황화물(AVS)은 저온 소성 굴 패각의 황화물 흡착 능력으로 인해 최대 50 %까지 감소한 것으로 확인되었다. 본 연구의 결과로부터 저온 소성 굴 패각은 연안 오염 퇴적물의 정화를 위해 이용될 수 있는 재료인 것으로 결론 지을 수 있다.

In this study, pyrolyzed oyster shells at a low temperature ($350^{\circ}C$) were applied for a mesocosm experiment to confirm resulting changes in the properties of sediment. After creating a covering of oyster shells, an increase in ORP and decrease in ammonia in the overlying water was observed in an experimental case. The decrease of TOC in this experiment was due to the dilution of organic matter due to the addition of inorganic matter (pyrolyzed oyster shells). The decrease in the concentration of AVS was observed due to the adsorption of AVS by the surface of the oyster shells. From the results obtained in this experiment, it has been concluded that pyrolyzed oyster shells at a low temperature can be used for remediation of polluted sediment.

키워드

참고문헌

  1. Asaoka, S., T. Yamamoto, S. Kondo and S. Hayakawa(2009), Removal of hydrogen sulfide using crushed oyster shell from pore water to remediation organically enriched coastal marine sediments, Bioresource Technology, Vol. 100, pp. 4127-4132. https://doi.org/10.1016/j.biortech.2009.03.075
  2. Chen, J., Y. Cai, M. Clack and Y. Yu(2013), Equilibrium and kinetic studies of phosphate removal from solution onto a hydrothermally modified oyster shell material, Material Science Forum, Vol. 787, pp. 128-134. https://doi.org/10.4028/www.scientific.net/msf.787.128
  3. Cho, D., H. J. Bae, J. Y. Lee and S. H. Kwon(2010), Environmental change and its enhancement of a bay sediment by using microbial and chemical treatments, Journal of the Environmental Sciences, Vol. 19, No. 11, pp. 1355-1362. https://doi.org/10.3321/j.issn:1001-0742.2007.11.013
  4. Hermassi, M., C. Valderrama, N. Moreno, O. Font, X. Querol, N. H. Batis and J. L. Cortina(2017), Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer, Journal of Environmental Chemical Engineering, Vol. 5, pp. 160-169. https://doi.org/10.1016/j.jece.2016.11.027
  5. Hsu, T. C.(2009), Experimental assessment of adsorption of $Cu^{2+}$ and $Ni^{2+}$ from aqueous solution by oyster shell powder, Hazardous Material, Vol. 171, pp. 995-1000. https://doi.org/10.1016/j.jhazmat.2009.06.105
  6. Huh, J. H., Y. H. Choi, C. Ramakrishna, S. H. Cheong and J. W. Ahn(2016), Use of calcined oyster shell powders as $CO_2$ adsorbent in algae-containing water, Korean Ceramic Society, Vol. 53, No. 4, pp. 429-434. https://doi.org/10.4191/kcers.2016.53.4.429
  7. Jung, J. H., K. S. Yoo, H. M. Kim and H. K. Lee(2007), Reuse of waste oyster shell as a SO2/NOx removal adsorbent, Industrial and Engineering Chemistry, Vol. 13, No. 4, pp. 512-517.
  8. Kim, E. H., N. C. Sung and S. H. Jang(1997), A study on recycling of waste oyster shells as seed crystals in phosphorous crystallization process, Korean Journal of Environmental Health Society, Vol. 23, No. 4, pp. 133-138.
  9. Kim, G., W. Jeong and S. Choe(2006), Sand capping for controlling phosphorus release from lake sediments, KSCE Journal of Civil Engineering, Vol. 26, pp. 125-130.
  10. Kim, K., K. Kim, I. C. Lee and T. Hibino(2018), Changes in performance of granulated coal ash on remediation of coastal sediment, Journal of Korean Society for Marine Environment & Energy, Vol. 21, No. 1, pp. 40-45. https://doi.org/10.7846/JKOSMEE.2018.21.1.40
  11. Korea Maritime Institute Fisheries Outlook Center(2017), http://www.foc.re.kr/web/obstats/stats.do?rbsIdx=87.
  12. Kwon, H. B., C. W. Lee, B. S. Jun, J. D. Yun, S. Y. Weon and B. Koopman(2003), Recycling waste oyster shell for eutrophication control, Resources, Conservation and Recycling, Vol. 41, pp. 75-82. https://doi.org/10.1016/j.resconrec.2003.08.005
  13. Lee, C. W., H. B. Kwon, H. P. Jeon and B. Koopman(2009), A new recycling material for removing phosphorus from water, Journal of Cleaner Production, Vol. 17, pp. 683-687. https://doi.org/10.1016/j.jclepro.2008.11.019
  14. Lee, G., D. W. Hwang, H. Hwang, J. H. Park, H. C. Kim and J. N. Kwon(2017), Distribution and pollution status of organic matter and heavy metals in surface sediment around Goseong Bay, a shellfish farming area, Korea, Journal of Korean Society of Marine Environment & Safety, Vol. 23, No. 6, pp. 699-709. https://doi.org/10.7837/kosomes.2017.23.6.699
  15. Lee, H. S.(2004), A study on characteristics of Corbicula japonica and Ostrea virginica, Journal of Environmental Health Sciences, Vol. 30, No. 5, pp. 427-431.
  16. Ministry of Oceans and Fisheries(2013), Republic of Korea, http://www.mof.go.kr/article/view.do?articleKey=24046&boardKey=35
  17. Moon, D. H., M. Wazne, K. H. Cheong, Y. Y. Chang, K. Baek, Y. S. Ok and J. H. Park(2015), Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag, Environmental Science And Pollution Research International, Vol. 22, No. 14, pp. 11162-11171. https://doi.org/10.1007/s11356-015-4612-6
  18. Oladoja, N. A., R. O. A. Adelagun, A. L. Ahmad and I. A. Ololade(2015), Phosphorus recovery from aquaculture wastewater using thermally treated gastropod shell, Process Safety and Environmental Protection, Vol. 98, pp. 296-308. https://doi.org/10.1016/j.psep.2015.09.006
  19. Park, S. Y.(2008), The characteristics of acid volatile sulfide formation in the sediment of Seonakdong river, Master Dissertation, Busan University.
  20. Sung, C. Y. and Y. I. Kim(2010), Strength and Durability Properties of Polymer Concrete Utilizing Oyster Shell Powder as a Filler, Journal of the Korean Society of Agriculture Engineers, Vol. 52, No. 6, pp. 125-134. https://doi.org/10.5389/KSAE.2010.52.6.125
  21. Woo, H. E., K. Kim, I. C. Lee and K. Kim(2018), A study on phosphate removal efficiency by pre-treatment conditioning of oyster shells, Journal of the Korean Society of Marine Environment & Safety, Vol. 24, No. 2, pp. 196-202. https://doi.org/10.7837/kosomes.2018.24.2.196
  22. Yamamoto, T., S. Kondo, K. H. Kim, S. Asaoka, H. Yamamoto, M. Tokuoka and T. Hibino(2012), Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shell, Marine Pollution Bulletin, Vol. 64, No. 11, pp. 2428-2431. https://doi.org/10.1016/j.marpolbul.2012.08.002
  23. Yoon, G. L., B. T. Kim, B. O. Kim and S. H. Han(2003), Waste Management, Vol. 23, pp. 825-834. https://doi.org/10.1016/S0956-053X(02)00159-9
  24. Yu, Y., R. Wu and M. Clark(2010), Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell, Journal of Colloid and Interface Science, Vol. 350, pp. 538-543. https://doi.org/10.1016/j.jcis.2010.06.033
  25. Zhong, B. Y., C. F. Zhou and Y. Yu(2012), Structure and property characterization of oyster shell cementing material, Structural Chemistry, Vol. 31, No. 1, pp. 85-92. https://doi.org/10.1007/s11224-019-01375-0

피인용 문헌

  1. 소성온도에 따른 굴 패각의 영양염 제거 성능 평가 vol.25, pp.7, 2019, https://doi.org/10.7837/kosomes.2019.25.7.906
  2. 굴 패각의 입경 및 소성 온도에 따른 연안 오염 저서환경 변화 연구 vol.26, pp.7, 2019, https://doi.org/10.7837/kosomes.2020.26.7.873