DOI QR코드

DOI QR Code

The Effects of the Light Quality of a Light Emitting Diode (LED) on the Phosphate Uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele

담녹조강 Tetraselmis suecica와 Tetraselmis tetrathele의 인산염 흡수에 미치는 발광다이오드 파장의 영향

  • Han, Kyong Ha (Department of Oceanography, Pukyong National University) ;
  • Oh, Seok Jin (Department of Oceanography, Pukyong National University)
  • Received : 2019.01.31
  • Accepted : 2019.02.25
  • Published : 2019.02.28

Abstract

This study was conducted to investigate the effects of the light quality of a Light Emitting Diode (LED) on the phosphate uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue LED (max = 450 nm), a yellow LED (max = 590 nm), a red LED (max = 630 nm) and a fluorescent lamp (control) at $100{\mu}mol\;m^{-2}\;s^{-1}$. The maximum uptake rates (${\rho}_{max}$) of T. suecica and T. tetrathele under the red LED were $6.35pmol\;cell^{-1}\;hr^{-1}$ and $9.85pmol\;cell^{-1}\;hr^{-1}$, respectively. The half saturation constants (Ks) of two species were $9.43{\mu}M$ and $21.2{\mu}M$, respectively. The phosphate affinity of the two species under the red LED was higher than that of other wavelengths. Thus, the optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would be red LEDs because of the high growth rate shown, regardless of relatively low nutrient conditions.

본 연구는 담녹조강 Tetraselmis suecica와 T. tetrathele의 인산염 흡수에 미치는 발광다이오드의 파장의 영향을 조사하였다. 파장은 청색 발광다이오드(LED; 450 nm), 황색 LED(590 nm), 적색 LED(630 nm) 그리고 형광램프(control)이며, 조도는 $100{\mu}mol\;m^{-2}\;s^{-1}$로 주사하였다. T. suecica와 T. tetrathele의 최대흡수속도(${\rho}_{max}$)는 적색 LED에서 $6.35pmol\;cell^{-1}\;hr^{-1}$$9.85pmol\;cell^{-1}\;hr^{-1}$로 나타났으며, 반포화농도(Ks)는 $9.43{\mu}M$$21.2{\mu}M$로 나타났다. 이는 적색 LED 아래에서 T. suecica와 T. tetrathele가 다른 파장보다 영양염에 대한 친화성이 높다는 것으로 의미한다. 따라서 경제성 및 생산성 향상을 위한 Tetraselmis 배양시스템(광배양기)의 최적 광원은 낮은 영양염 상태에서도 높은 생장속도를 보이는 적색 LED가 적합할 것으로 판단된다.

Keywords

References

  1. Cameron, H., M. T. Mata and C. Riquelme(2018), The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evolution of the potential use of this microalgae in bioremediation, Vol. 6, p. 5295. https://doi.org/10.7717/peerj.5295
  2. Eppley, R. W., J. N. Rogers and J. J. McCarthy(1969), Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton, Limnology Oceanography, Vol. 14, No. 6, pp. 912-920. https://doi.org/10.4319/lo.1969.14.6.0912
  3. Fu, W., O. Guamundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. O. Palsson and S. Brynjolfsson(2013), Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution, Applied microbiology and biotechnology, Vol. 97, No. 6, pp. 2395-2403. https://doi.org/10.1007/s00253-012-4502-5
  4. Gomez, P. and M. A. Gonzalez(2004), Genetic variation among seven strains of Dunaliella salina (chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences, Aquaculture, Vol. 233, No. 1-4, pp. 149-162. https://doi.org/10.1016/j.aquaculture.2003.11.005
  5. Han, K. H. and S. J. Oh(2018), Effects of Various Intensities and Wavelengths of Light Emitting Diodes (LEDs) on the Growth of the Prasinophytes Tetraselmis suecica and T. tetrathele, Korean Journal of Fisheries and Aquatic Science, Vol. 51, No. 1, pp. 64-71. https://doi.org/10.5657/KFAS.2018.0064
  6. Harrison, P. J., J. S. Parslow and H. L. Conway(1989), Determination of nutrient uptake kinetic parameters: a comparison of methods, Marine Ecology Progress Series, Vol. 52, pp. 301-312. https://doi.org/10.3354/meps052301
  7. Jeon, Y. C., C. W. Cho and Y. S. Yun(2005), Measurement of microalgal photosynthetic activity depending on light intensity and quality, Biochemical Engineering Journal, Vol. 27, No. 2, pp. 127-131. https://doi.org/10.1016/j.bej.2005.08.017
  8. Kim, C. W. and S. B. Hur(1998), Dietary value of frozen and freeze-dried Tetraselmis suecica, Journal of Aquaculture, Vol. 11, No. 2, pp. 183-191.
  9. Kwon, H. K.(2013), A study on phytoremediation of eutrophic coastal sediments using benthic microalgae and light emitting diode, Ph.D Thesis, Pukyong National University, Busan, Korea.
  10. Ladygina, N., E. G. Dedyukhina and M. B. Vainshtein(2006), A review on microbial synthesis of hydrocarbons, Process Biochemistry, Vol. 41, No. 5, pp. 1001-1014. https://doi.org/10.1016/j.procbio.2005.12.007
  11. Lee, Y. J., C. H. Lee, K. Cho, H. N. Moon, J. Namgung, K. H. Kim, B. J. Lim, D. Kim and I. K. Yeo(2017), Effect of Temperature-induced two-stage cultivation on the lipid and saccharide accumulation of Microalgae Chlorella vulgaris and Dunaliella salina, Korean Journal Aquatic Science, Vol. 50, No. 1, pp. 32-40. https://doi.org/10.5657/KFAS.2017.0032
  12. Matthijs, H. C., H. Balke, U. M. van Hes, B. M. Kroon, L. R. Mur and R. A. Binot(1996), Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa), Biotechnology Bioengineering, Vol. 50, No. 1, pp. 98-107. https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<98::AID-BIT11>3.0.CO;2-3
  13. Maddux, W. S. and R. F. Jones(1964), Some interaction of temperature, light intensity and nutrient concentration during the continuous culture of Nitzschia closterium and Tetraselmis sp, Limnology and Oceanography, Vol. 9, No. 1, pp. 79-86. https://doi.org/10.4319/lo.1964.9.1.0079
  14. McHugh, D. J.(2003), A guide to the seaweed industry, Food and Agriculture Organization of the United Nations, Rome, p. 118.
  15. Michels, M. H., M. Vaskoska, M. H. Vermue and R. H. Wijffels(2014), Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm, Water Research, Vol. 65, No. 15, pp. 290-296. https://doi.org/10.1016/j.watres.2014.07.017
  16. Min, B. H.(2018), Growth and survival on live food for larval development stage of Ark shell Scapharca broughtonii, The Korean Journal Malacology, Vol. 34, No. 2, pp. 79-88. https://doi.org/10.9710/kjm.2018.34.2.79
  17. Mouget, J. L., P. Rosa and G. Tremblin(2004), Acclimation of Haslea ostrearia to light of different spectral qualities confirmation of 'chromatic adaptation' in diatoms, Journal of Photochemistry and Photobiology B: Biology, Vol. 75, No. 1-2, pp. 1-11. https://doi.org/10.1016/j.jphotobiol.2004.04.002
  18. Oh, S. J., H. K. Kwon, J. Y. Jeon and H. S. Yang(2015), Effect of monochromatic light emitting diode on the growth of four microalgae species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.), Journal of the Korean Society of Marine Environment & Safety, Vol. 21, No. 1, pp. 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001
  19. Pulz, O. and W. Gross(2004), Valuable products from biotechnology of microalgae, Applied Microbiology Biotechnology, Vol. 65, No. 6, pp. 635-48. https://doi.org/10.1007/s00253-004-1647-x
  20. Park, H. J., E. J. Jin, T. M. Jung, H. Joo and J. H. Lee(2010), Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Journal of the Korean Industrial and Engineering Chemistry, Vol. 21, No. 6, pp. 659-663.
  21. Parke, M. and J. C. Green(1976), Chlorophyta, Prasinophyceae. In: Parke, M. and P. S. Dixon(eds.) Check-list of British marine algae (third revision), Journal of the Marine Biological Association of the United Kingdom, Vol. 56, pp. 564-566.
  22. Porter, K. G. and Y. S. Feig(1980), The use of DAPI for identifying and counting aquatic microflora, Limnology Oceanography, Vol. 25, No. 5, pp. 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  23. Ra, C. H., C. H. Kang, J. H. Jung, G. T. Jeong and S. K. Kim(2016), Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource technology, Vol. 212, pp. 254-261. https://doi.org/10.1016/j.biortech.2016.04.059
  24. Raja, R., S. Hemaiswarya, N. Ashok Kumar, S. Sridhar and R. Rengasamy(2008), A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, Vol. 34, pp. 77-88. https://doi.org/10.1080/10408410802086783
  25. Sanchez-Saavedra, M. P. and D. Voltolina(1994), The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comparative Biochemistry and Physiology, Vol. 107B, No. 1, pp. 39-44.
  26. Schulze, P. S., C. F. M. Carolina, H. Pereira, K. N. Gangadhar, L. M. Schuler, T. F. Santos, J. C. S. Varela and L. Barreira(2017), Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta), Bioresource Technology, Vol. 223, pp. 175-183. https://doi.org/10.1016/j.biortech.2016.10.027
  27. Spolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert (2006), Commercial applications of microalgae. Journal of Bioscience and Bioengineering, Vol. 101, No. 2, pp. 87-96. https://doi.org/10.1263/jbb.101.87
  28. Su, C. H., L. J. Chien, J. Gomes, Y. S. Lin, Y. K. Yu, J. S. Liou and R. J. Syu(2011), Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal Applied Phycology Vol. 23, No. 5, pp. 903-908. https://doi.org/10.1007/s10811-010-9609-4
  29. Takano, H., T. Arai, M. Hirano and T. Matsunaga(1995), Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Applied Microbiology and Biotechnology, Vol. 43, No. 6, pp. 1014-1018. https://doi.org/10.1007/BF00166918
  30. Wang, C. Y., C. C. Fu and Y. C. Liu(2007), Effects of using light-emitting diodes on the cultivation of spirulina platensis. Biochemical Engineering Journal, Vol. 37, pp. 21-25. https://doi.org/10.1016/j.bej.2007.03.004