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EXTREMAL CHEMICAL TREES WITH RESPECT TO

HYPER-ZAGREB INDEX

Ali Ghalavand a, ∗, Ali Reza Ashrafi b, Reza Sharafdini c and

Ottorino Ori d

Abstract. Suppose G is a molecular graph with edge set E(G). The hyper-Zagreb
index of G is defined as HM(G) =

∑
uv∈E(G)[degG(u) + degG(v)]

2, where degG(u)

is the degree of a vertex u in G. In this paper, all chemical trees of order n ≥ 12
with the first twenty smallest hyper-Zagreb index are characterized.

1. Introduction

Throughout this paper, all graphs will be assumed to be finite, undirected and

simple. The vertex and edge set of such a graph is denoted by V (G) and E(G),

respectively. The notation degG(v) denotes the degree of a vertex v in G and N [v,G]

stands for the set of all vertices adjacent to v. A vertex of degree one is called a

pendant vertex and we use ∆ = ∆(G) to denote the maximum degree of vertices in

G. Suppose ni = ni(G) denotes the number of vertices of degree i in G, then it is

obvious that
∑∆(G)

i=1 ni = |V (G)|. We also use the notation mi,j(G) for the number

of edges in G connecting a vertex of degree i to a vertex of degree j.

Choose the subset W of V (G) and define the subgraph G−W to construct from

G by deleting the vertices of W and all edges incident to a vertex in W . In a similar

way, if E′ ⊆ E(G), then G−E′ denotes the subgraph of G obtained by deleting the

edges of E′. In the case that W = {v} and E′ = {xy}, the subgraphs G −W and

G − E′ will be written as G − v and G− xy, respectively. Furthermore, if x and y

are not adjacent in G, then G+xy is the graph obtained from G by adding the edge

xy.
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A connected acyclic graph is called a tree and the path and star graphs on n

vertices will be denoted by Pn and Sn, respectively. The chemical graph theory

is one of the most important topic in mathematical chemistry that investigate the

chemical problems by graph theory language. Topological indices are main tools

of chemical graph theory and simply we can say that they are graph invariants

applicable in chemistry [7, 11].

The Zagreb indices that was introduced by Ivan Gutman and Nanad Trinajstić

[14], are most important degree-based topological indices in mathematical chemistry.

These numbers are used by various researchers in QSPR/QSAR studies [1, 16, 20]

and also some mathematicians studied their mathematical properties, see [1, 4, 5,

6, 12, 13] for details.

In an exact phrase, the first and the second Zagreb indices of a graph G are defined

asM1(G) =
∑

uv∈E(G)[degG(u)+degG(v)] andM2(G) =
∑

uv∈E(G)[degG(u)degG(v)],

respectively. There are some modification and generalization of Zagreb indices. The

hyper-Zagreb index is one of such modified version which introduced by Shirdel, et

al. in 2013 [19] as HM(G) =
∑

uv∈E(G)[degG(u)+degG(v)]
2. It is worth mentioning

that in 2010, Zhou and Trinajstić introduced the general sum-connectivity index [22]

as χα(G) =
∑

uv∈E(G)[degG(u) + degG(v)]
α, where χ1(G) = M1(G) and χ2(G) =

HM(G).

In [19], the authors computed Hyper Zagreb index for the cartesian product,

composition, join and disjunction of graphs. Basavanagoud et al. [3] corrects some

errors in [19] and gave the correct expressions for hyper-Zagreb index of some other

graph operations. Pattabiraman et al. [17] obtained the hyper Zagreb index and its

coindex of the edge corona product graph, double graph and Mycielskian graphs.

Veylaki et al. [21] defined the hyper-Zagreb coindex of graph G as HM(G) =
∑

uv∈E(G)[degG(u) + degG(v)]
2. They also presented some identities for HM(G)

and HM
2
(G). In [15], Gutman determined some basic relations between HM(G)

and HM
2
(G).

Basavanagoud et al. [2] characterized the expressions for forgotten topological

index, hyper-Zagreb index and coindex for generalized transformation graphs and

their complements. In [9], Elumalai et al. established, analyzed and compared some

new upper bounds on the hyper-Zagreb index in terms of the number of vertices

and edges, maximum and minimum vertex degrees, first and second Zagreb indices,

harmonic index, and inverse edge degree. Falahati-Nejad et al. [10] presented some
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Figure 1. The chemical trees T1, T2, T and T ′ in Transformation A.

upper and lower bounds for the hyper-Zagreb index in terms of some chemical pa-

rameters and relate this index to various well-known molecular descriptors. In [18]

Rezapour et al. characterized the trees and unicyclic graphs with the first four and

first eight greatest hyper Zagreb index, respectively.

In this paper, we aim to determine extremal chemical trees with respect to hyper-

Zagreb index via applying some graph operations decreasing hyper Zagreb index and

the chemical trees of order n ≥ 12 with the first twenty smallest hyper Zagreb index

will be presented.

2. Some Graph Transformations

In this section, some graph transformations are presented that decrease the

Hyper-Zagreb index of chemical trees.

Transformation A. Suppose that T1 is a chemical tree with given vertex w. In

addition, suppose that T2 is another chemical tree with given vertices u1, u2 and u3,

such that dT2(u1) = 2 or 3, dT2(u3) = 1 and u2u3 ∈ E(T2). let T be the chemical

tree obtained from T1 and T2 by attaching vertices w, u1, and T ′ = T −wu1 +wu3.

The above referred chemical trees have been illustrated in Fig. 1.

Lemma 2.1. Let T and T ′ be two chemical trees as shown in Fig. 1. Then we have

HM(T ′) < HM(T ).

Proof. We distinguish the following cases:

Case 1. u1 6= u2. In this case suppose that N [u1, T2] = {f1, f2, ..., fdT2 (u1)} and

dT2(fi) = di, for i = 1, 2, .., dT2 (u1). We have

HM(T )−HM(T ′) = (dT1(w) + dT2(u1) + 2)2 + (dT2(u2) + 1)2
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+

dT2 (u1)
∑

i=1

(di + dT2(u1) + 1)2 −
(

(dT1(w) + 3)2

+ (dT2(u2) + 2)2 +

dT2 (u1)
∑

i=1

(di + dT2(u1))
2
)

> dT2(u1)
2 + dT1(w)(2dT2 (u1)− 2) + 5dT2(u1)

− (2dT2(u2) + 8) ≥ 0 as dT2(u1) ≥ 2.

Case 2. u1 = u2. Suppose N [u1, T2] = {f1(:= u3), f2, ..., fdT2 (u1)}, dT2(fi) = di, for

i = 2, .., dT2(u1). Then,

HM(T )−HM(T ′) = (dT1(w) + dT2(u1) + 2)2 + (dT2(u1) + 2)2

+

dT2 (u1)
∑

i=2

(di + dT2(u1) + 1)2 −
(

(dT1(w) + 3)2 + (dT2(u1) + 2)2

+

dT2 (u1)
∑

i=2

(di + dT2(u1))
2
)

> (dT1(w) + dT2(u1) + 2)2 − (dT1(w) + 3)2 > 0 as dT2(u1) ≥ 2.

which completes the proof. �

Transformation B. Suppose that T1 and T2 are two chemical trees with given

vertices w ∈ V (T1) and {u1, u2} ⊆ V (T2) such that 1 ≤ dT1(w) ≤ 3, dT2(u1) = 2 or 3,

dT2(u2) = 1 and u1u2 ∈ E(T2). In addition, suppose that Pk := v0v1 . . . vk is a path,

of length k ≥ 0. let T be the chemical tree obtained from T1, T2 and Pk by adding

the edges wu1, u2v0, and T ′ = T − {wu1, u2v0} + {wv0, vku1}. The above referred

chemical trees have been illustrated in Fig. 2.

Lemma 2.2. Let T and T ′ be two chemical trees as shown in Fig. 2. Then we have

HM(T ′) < HM(T ).

Proof. By definition,

HM(T )−HM(T ′) = (dT1(w) + dT2(u1) + 2)2 + (dT2(u1) + 3)2 + 32

−
(

(dT1(w) + 3)2 + (dT2(u1) + 3)2 + (dT2(u1) + 2)2
)

= 2dT1(w)dT2(u1)− 2dT1(w) > 0 as dT2(u1) ≥ 2,

proving the lemma. �
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Figure 2. The chemical trees T1, T2, Pk, T and T ′ in Transformation B.
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xv2

Figure 3. The chemical trees T1, T2, T3, Pk, T and T ′ in Transfor-
mation C.

Transformation C. Suppose that T1, T2 and T3 are three chemical trees with

given vertices w ∈ V (T1), {v1, v2} ⊆ V (T2) and x ∈ V (T3) such that dT1(w) = 1,

dT2(v2) = 2 or 3 and dT3(x) = 2 or 3. In addition, suppose that Pk := u0u1 . . . uk is a

path, of length k ≥ 0. let T be the chemical tree obtained from T1, T2, T3 and Pk by

adding the edges wu0, ukv1, v2x and T ′ = T − {wu0, ukv1, v2x}+ {wv1, v2u0, ukx}.

The above referred chemical trees have been illustrated in Fig. 3.

Lemma 2.3. Let T and T ′ be two chemical trees as shown in Fig. 3. Then

HM(T ′) < HM(T ).
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Proof. By definition,

HM(T )−HM(T ′) = 42 + (dT2(v2) + dT3(x) + 2)2

−
(

(dT2(v2) + 3)2 + (dT2(x) + 3)2
)

= 2
(

dT2(v2)dT3(x) + 1− (dT2(v2) + dT3(x))
)

> 0 as dT2(v2), dT3(x) ≥ 2,

proving the lemma. �

3. Main Results

For positive integers x1, . . . , xm, and y1, . . . , ym, let T (x
(y1)
1 , . . . , x

(ym)
m ) be the

class of trees with xi vertices of the degree yi, i = 1, . . . ,m. Note that this class may

be empty.

Lemma 3.1. (See [8]) If G is a chemical tree with n vertices, then n1(G) = n3(G)+

2n4(G) + 2 and n2(G) = n− (2n3(G) + 3n4(G) + 2).

Lemma 3.2. (See [8]) There is a tree of order n (> 2) in T (x
(y1)
1 , . . . , x

(ym)
m ) if and

only if
∑m

i=1 xiyi = 2n− 2.

Remark 3.3. Note that if n ≥ 13, then by Lemma 3.2, our classes of chemical trees

are nonempty sets.

Notations: For a positive number n ≥ 13, let:

H(n) = {T ∈ T (4(3), (n− 10)(2), 6(1)) | m1,2(T ) = 0 , m1,3(T ) = 6 ,m2,2(T ) = n− 13,

m2,3(T ) = 6, m3,3(T ) = 0}

F (n) = {T ∈ T (1(4), 1(3), (n − 7)(2), 5(1)) | m1,2(T ) = 0 , m1,3(T ) = 2 , m1,4(T ) = 3 ,

m2,2(T ) = n− 8 , m2,3(T ) = 1, m2,4(T ) = 1 , and m3,4(T ) = 0}.

It is easy to see that for each T1 ∈ H(n), T2 ∈ F (n) and T3 := Pn,

HM(T1) = 16n + 38,(3.1)

HM(T2) = 16n + 40,(3.2)

HM(T3) = 16n − 30.(3.3)
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Theorem 3.4. Let T́ be a chemical tree with n ≥ 13 vertices and ∆(T́ ) = 3, such

that n3(T́ ) ≥ 4. if T́ 6∈ H(n). Then, for each T ∈ H(n), HM(T ) < HM(T ′).

Proof. We have two separate classes as follows

Case 1. T́ ∈ T (4(3), (n − 10)(2), 6(1)). Since T́ 6∈ H(n), T́ has at least one of the

following conditions: m1,2(T ) 6= 0 , m1,3(T ) 6= 6 ,m2,2(T ) 6= n − 13, m2,3(T ) 6=

6 or m3,3(T ) 6= 0.

We now apply repeated applications of Transformations B and C to obtain a chem-

ical tree Q ∈ H(n). By Lemmas 2.2 and 2.3, HM(T ) = HM(Q) < HM(T ′), as

desird.

Case 2. n3(T́ ) ≥ 5. Since n3(T́ ) ≥ 5, by repeated applications of Transformation A

we obtain a chemical tree G ∈ T (4(3), (n−10)(2), 6(1)). If G ∈ H(n), then by Lemma

2.1, HM(T ) = HM(G) < HM(T ′). Otherwise, we obtain the result by replacing T́

with G in Case 1. �

Theorem 3.5. Let T́ be a chemical tree with n ≥ 8 vertices and ∆(T́ ) = 4. Then,

if T́ 6∈ F (n) ∪ T (1(4), (n − 5)(2), 4(1)), T ∈ F (n), then HM(T ) < HM(T ′).

Proof. We have three cases as follows:

Case 1. T́ ∈ T (1(4), 1(3), (n − 7)(2), 5(1)). Since T́ 6∈ H(n), T́ has at least one of

the following conditions: m1,2(T ) 6= 0 , m1,3(T ) 6= 2 , m1,4(T ) 6= 3 , m2,2(T ) 6=

n − 8 , m2,3(T ) 6= 1, m2,4(T ) 6= 1 , or m3,4(T ) 6= 0. By repeated applications

of Transformations B and C we obtain a chemical tree Q ∈ H(n). We now apply

Lemmas 2.2 and 2.3, to prove HM(T ) = HM(Q) < HM(T ′).

Case 2. n4(T́ ) ≥ 2. Since n4(T́ ) ≥ 2, by repeated applications of Transformation

A we obtain a chemical tree G ∈ T (1(4), 1(3), (n− 7)(2), 5(1)). If G ∈ F (n), then by

Lemma 2.1, HM(T ) = HM(G) < HM(T ′). Otherwise, we obtain the result by

replacing T́ with G in Case 1.

Case 3. n4(T́ ) = 1 and n3(T́ ) ≥ 2. Since n3(T́ ) ≥ 2, by repeated applications

of Transformation A we obtain a chemical tree Q ∈ T (1(4), 1(3), (n − 7)(2), 5(1)). If

Q ∈ F (n), then by Lemma 2.1, HM(T ) = HM(Q) < HM(T ′). Otherwise, we

obtain the result by replacing T́ with Q in Case 1. �

Remark 3.6. Let T1 := Pn, T2 ∈ G1, T3 ∈ G2, T4 ∈ G3, T5 ∈ I1, T6 ∈ I2, T7 ∈

I3, T8 ∈ I6, T9 ∈ I4, T10 ∈ I7, T11 ∈ I5, T12 ∈ I8, T13 ∈ I9, T14 ∈ L1, T15 ∈

L2, T16 ∈ L7, T17 ∈ L3, T18 ∈ L8, T19 ∈ A1, T20 ∈ L4, T21 ∈ L9, T22 ∈ L13, T23 ∈
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Table 1. The Chemical Trees in Class T (1(4), (n− 5)(2), 4(1)).

Notation m2,4 m1,4 m1,2 m2,2 HM

A1 1 3 1 n-6 16n+24
A2 2 2 2 n-7 16n+28
A3 3 1 3 n-8 16n+32
A4 4 0 4 n-9 16n+36

Table 2. The Chemical Trees in Class T (3(3), (n− 8)(2), 5(1)).

Notation m3,3 m2,3 m1,2 m1,3 m2,2 HM

L1 0 4 0 5 n-10 16n+20
L2 0 5 1 4 n-11 16n+22
L3 0 6 2 3 n-12 16n+24
L4 0 7 3 2 n-13 16n+26
L5 0 8 4 1 n-14 16n+28
L6 0 9 5 0 n-15 16n+30
L7 1 2 0 5 n-9 16n+22
L8 1 3 1 4 n-10 16n+24
L9 1 4 2 3 n-11 16n+26
L10 1 5 3 2 n-12 16n+28
L11 1 6 4 1 n-13 16n+30
L12 1 7 5 0 n-14 16n+32
L13 2 1 1 4 n-9 16n+26
L14 2 2 2 3 n-10 16n+28
L15 2 3 3 2 n-11 16n+30
L16 2 4 4 1 n-12 16n+32
L17 2 5 5 0 n-13 16n+34

Table 3. The Chemical Trees in Class T (2(3), (n− 6)(2), 4(1)).

Notation m3,3 m2,3 m1,2 m1,3 m2,2 HM

I1 0 2 0 4 n-7 16n+2
I2 0 3 1 3 n-8 16n+4
I3 0 4 2 2 n-9 16n+6
I4 0 5 3 1 n-10 16n+8
I5 0 6 4 0 n-11 16n+10
I6 1 1 1 3 n-7 16n+6
I7 1 2 2 2 n-8 16n+8
I8 1 3 3 1 n-9 16n+10
I9 1 4 4 0 n-10 16n+12
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Table 4. The Chemical Trees in Class T (1(3), (n− 4)(2), 3(1)).

Notation m2,3 m1,2 m1,3 m2,2 HM

G1 1 1 2 n-5 16n-14
G2 2 2 1 n-6 16n-12
G3 3 3 0 n-7 16n-10

L5, T24 ∈ L10, T25 ∈ L14, T26 ∈ A2, T27 ∈ L6, T28 ∈ L11, T29 ∈ L15, T30 ∈

L12, T31 ∈ L16, T32 ∈ A3, T33 ∈ L17, T34 ∈ A4, T35 ∈ H(n) and T36 ∈ F (n).

Theorem 3.7. If n ≥ 13 and T ∈ τ(n)�{T1, T2, ..., T35}, then

HM(T1) < HM(T2) < HM(T3) < HM(T4) < HM(T5) < HM(T6) < HM(T7) =

HM(T8) < HM(T9) = HM(T10) < HM(T11) = HM(T12) < HM(T13) < HM(T14)

< HM(T15) = HM(T16) < HM(T17) = HM(T18) = HM(T19) < HM(T20) =

HM(T21) = HM(T22) < HM(T23) = HM(T24) = HM(T25) = HM(T26) <

HM(T27) = HM(T28) = HM(T29) < HM(T30) = HM(T31) = HM(T32) <

HM(T33) < HM(T34) < HM(T35) = 16n + 38 < HM(T ).

Proof. The proof follows from Tables 1, 2, 3, 4 and Equations 3.1, 3.3. To explain,

we note that

HM(T1) < HM(T2) < HM(T3) < HM(T4) < HM(T5) < HM(T6) < HM(T7) =

HM(T8) < HM(T9) = HM(T10) < HM(T11) = HM(T12) < HM(T13) < HM(T14)

< HM(T15) = HM(T16) < HM(T17) = HM(T18) = HM(T19) < HM(T20) =

HM(T21) = HM(T22) < HM(T23) = HM(T24) = HM(T25) = HM(T26) <

HM(T27) = HM(T28) = HM(T29) < HM(T30) = HM(T31) = HM(T32) <

HM(T33) < HM(T34) < HM(T35) = 16n + 38. If ∆(G) = 3 and n3(G) ≥ 4

then the proof follows from Theorem 3.4 and Equations 3.1. Suppose ∆(T ) = 4. If

n4(T ) ≥ 2 or (n4(T ) = 1 and n3(T ) ≥ 1), then Theorem 3.5 and Equations 3.2 gives

us the result. Otherwise, T ∈ {T1, T2, ..., T35}. �

Remark 3.8. If n = 12, then

HM(T1) < HM(T2) < HM(T3) < HM(T4) < HM(T5) < HM(T6) < HM(T7) =

HM(T8) < HM(T9) = HM(T10) < HM(T11) =HM(T12) < HM(T13) < HM(T14)

< HM(T15) = HM(T16) < HM(T17) = HM(T18) = HM(T19) < HM(T21) =

HM(T22) < HM(T24) = HM(T25) = HM(T26) < HM(T29) < HM(T31) =

HM(T32) < HM(T34) < HM(T ′) = HM(T36) = 16n + 40 < HM(T ).
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T1 T2 T3 T4 T5

T6 T7 T8 T9
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T34 T35 T36

Figure 4. The chemical trees in Remark 3.6

T ′ T ′

Figure 5. The chemical tree T ′ in Remark 3.8.
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