DOI QR코드

DOI QR Code

Physiological Activity of Robinia pseudo acacia Leaf Extracts and Enhancement of Skin Permeation Using Polymer Micelles and Cell Penetrating Peptide

아카시아 잎 추출물의 생리 활성 및 고분자 미셀과 세포투과 펩티드를 적용한 피부흡수증진 효과

  • 허수현 (을지대학교 대학원 시니어헬스케어학과 화장품약리학전공) ;
  • 박수인 (을지대학교 대학원 시니어헬스케어학과 화장품약리학전공) ;
  • 안규민 (을지대학교 대학원 시니어헬스케어학과 화장품약리학전공) ;
  • 신문삼 (을지대학교 대학원 시니어헬스케어학과 화장품약리학전공)
  • Received : 2019.05.13
  • Accepted : 2019.07.08
  • Published : 2019.08.31

Abstract

This study was conducted to evaluate physiological activity of Robinia pseudo-acacia leaf and its skin penetration using polymer micelles and skin penetrating peptide. After extraction with Robinia pseudo-acacia using the ethanol and distilled water, various physiological activities were examined. The total concentration of polyphenol compounds was determined to be 47.42 mg/g (ethanol extract), 56.88 mg/g (hydrothermal extract) and DPPH radical scavenging ability at $1,000{\mu}g/mL$ was 44.24% in ethanol extract and it is higher than value(41.50%) in hydrothermal extract. The elastase inhibitory assay showed concentration dependence and elastase inhibition of Robinia pseudo acacia leaf ethanol extract was 54.09%, which was the highest at $500{\mu}g/mL$. In the SOD-like experiments, the concentration-dependent results were showed and the SOD-like activity of the Robinia pseudo-acacia leaf ethanol extract was higher than that of the Robinia pseudo acacia leaf hydrothermal extract at all concentrations. At a concentration of $500{\mu}g/mL$, Robinia pseudo acacia leaf ethanol extract showed the highest SOD-like activity of 76.41%. The tyrosinase inhibition at $20{\mu}g/mL$ was determined to be 56.47% (ethanol extract), 23.05% (hydrothermal extract). In the antimicrobial experiments, the hydrothermal extract had no effect, but ethanol extract represented maximum clear zone of 11.00 mm in Propionbacterium acnes strain and maximum clear zone of 10.50 mm. in Bacillus subtilis strain. To solve the problem of insolubility and to improve skin penetration, PCL-PEG polymer micelles containing Robinia pseudo-acacia leaf ethanol extracts and 1.0% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with particle size of 108.23 and 126.47 nm and excellent skin permeation effects could be showed.

본 연구의 목적은 아카시아 잎의 생리활성을 평가하고 고분자 미셀과 세포투과 펩티드를 이용한 피부흡수 증진에 관한 것이다. 아카시아 잎을 열수 및 에탄올 추출한 후에, 항노화, 미백, 항균 등 다양한 생리활성을 측정하였다. 총 polyphenol 함량은 열수 추출에서 56.88 mg/g, 에탄올 추출에서 47.42 mg/g이고, DPPH radical 소거능은 농도 $1,000{\mu}g/mL$에서, 에탄올 추출물의 경우 44.24% 저해율을 나타냈고 이는 열수 추출물의 값(41.50%)보다 더 좋은 효능을 나타냈다. Elastase 저해능 실험결과에서 농도 의존성을 보였으며, 아카시아 잎 에탄올 추출물 $500{\mu}g/mL$에서 가장 높은 54.09% 저해능, 열수 추출물은 36.95% 저해능을 보였다. SOD 유사 활성능 결과에서 농도 의존적인 결과를 보였고, 모든 농도에서 아카시아 잎 에탄올 추출물이 열수 추출물의 값보다 높았다. $500{\mu}g/mL$에서 76.41%, 같은 농도에서 아카시아 잎 에탄올 추출에서 86.31%로 더욱 높은 활성을 나타냈다. Tyrosinase 저해능 실험에서는 아카시아 잎 에탄올 추출물 농도 20 mg/mL에서 56.47% 저해율, 아카시아 잎 열수 추출물은 23.05% 저해율이 나타났다. 항균실험 결과에서는 아카시아 열수 추출물은 항균효과를 나타내지 못했지만, 아카시아 에탄올 추출물은 P ropionbacterium acnes 균주에서 11.00 mm의 최대 clear zone을, Bacillus subtilis 균주에선 10.50 mm로 최대 clear zone을 제시하였다. 난용성 문제와 피부 흡수율을 증진시키기 위하여, 아카시아 에탄올 추출물과 1.0% 세포투과 펩티드(6개 알르기닌, R6)을 함유한 108.23, 126.47 nm로 약 1/10배 미세한 나노입자 크기를 갖는 PCL-PEG 고분자 미셀이 성공적으로 제조되었고, 우수한 경피흡수 증진 효과를 나타낼 수 있었다.

Keywords

References

  1. Thayer DW, Boyd G, Kim A, Fox JB, Farrel HM, "Fate of gamma-irradiated Listeria monocytogenes during refregered storage on raw of cooked turkey breast meat", Journal of Food Protection, Vol. 61(8), pp. 979-987, 1998. https://doi.org/10.4315/0362-028X-61.8.979
  2. Kreydiyyeh SI, Usta J, "Diuretic effect and mechanism of action of parsley", Journal of Ethnopharmacology, Vol. 79(3), pp. 353-357, 2002. https://doi.org/10.1016/S0378-8741(01)00408-1
  3. Kim CS, Ahn KS ,Perk KC, Jeon BS, Lee JT, Park JW, "Isolation of antioxidative compound from Scutellaria baicalensis", Korean Journal of Medicinal Crop Science, Vol. 14(4), pp. 212-216, 2006.
  4. Kim YG, Pham DN, Lee YH, Jo JJ, Choe EY, Lee YH, Kim SB, Kim CJ "Whitening and antioxidant activities of fermentation broth of acacia flower (Robinia pseudoacacia), Clean technology, Vol. 23(4), pp. 401-407, 2017. https://doi.org/10.7464/ksct.2017.23.4.401
  5. Hyun H, Kim MS, Khang GS, Rhee JM, Lee HB, "Synthesis and characterization of linear and branched copolymers of poly(ethylene glycol) and poly(${\varepsilon}$-caprolactone)", Polymer, Vol. 30(2), pp. 146-151, 2006.
  6. Lundberg P, Langel U, "A brief introduction to cell-penetrating peptides", Journal of Molecular Recognition, Vol. 16, pp. 227-233, 2003. https://doi.org/10.1002/jmr.630
  7. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB, "The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proceedings of the National Academy of Sciences, Vol. 97, pp. 13003-13008, 2000. https://doi.org/10.1073/pnas.97.24.13003
  8. Folin O, Denis W, "On phosphotungstic - phosphomolybdic compounds as color reagents", Journal of Biological Chemistry, Vol. 12 pp. 239-243, 1912. https://doi.org/10.1016/S0021-9258(18)88697-5
  9. Lee SH, Lee SO, "Polyphenol contents and antioxidant activities of lentil extracts from different cultivars", Journal of Korean Society of Food Science Nutrition, Vol. 45(7), pp. 973-979, 2016. http://dx.doi.org/10.3746/jkfn.2016.45.7.973
  10. Blois MS, "Antioxidant determinations by the use of a stable free radical", Journal of Nature, Vol. 181, pp. 1199-1200, 1958. http://dx.doi.org/10.1038/1811199a0
  11. Bae RN, Lee SK, "Factors affecting browing and its control methods in chopped garlic", Journal of the Korean Society for Horticultural Science, Vol. 31, pp. 213-218, 1990.
  12. Jo KS, Kim HK, Ha JH, Park MH, Shin HS, "Flavor compounds and storage stability of essential oil from garlic distillation", Korean Journal of Food Science and Technology, Vol. 22(7), pp. 840-845, 1990.
  13. Kubo I, Kinst-Hori I, Yokokawa Y, "Tyrosinase inhibitors from Anacardium occidentale fruits", Journal of Natural Products, Vol. 57, pp. 545-551, 1994. https://doi.org/10.1021/np50106a021
  14. Ko MO, Kang HJ, Hwang JH, Yang KW, "Screening of the antibacterial effects by ethanol extracts from natural plant in Jeju against Propionibacterium acnes", Journal of Society of Cosmetic Scientists of Korea, Vol. 44(1), pp. 59-66, 2018. http://dx.doi.org/10.15230/SCSK.2018.44.1.59
  15. Park JS, "The antioxidative, antimicrobial Activity and tyrosinase activity inhibitory effect of extracts from parts of Robinia pseudo acacia", Master Thesis, Soongsil University, 2008.
  16. Awika JM, Rooney LW, Wu X, Prior RL, Cineros-Zevallos L, "Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products", Journal of Agricultural and Food Chemistry, Vol. 51, pp. 6657-6662, 2003. https://doi.org/10.1021/jf034790i
  17. Papa ND., Tatjana S, Alain C, "Study on chemical composition, antioxidant and antiinflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions", Food Chemistry, Vol. 113, pp. 897-902 (2009). https://doi.org/10.1016/j.foodchem.2008.08.016
  18. Kwak YJ, Kim JS, "Changes of chlorophyll and sod-like activities of chinese chives dehydrated at different heat treatments : anti-aging and antiwrinkle effects", Journal of Korean Society of Food Science Nutrition, Vol. 38, pp. 879-884, 2009. https://doi.org/10.3746/jkfn.2009.38.7.879
  19. Kligman D, "Cosmeceuticals", Dermatologic Clinics, Vol. 18(4), pp. 609-615, 2000. https://doi.org/10.1016/S0733-8635(05)70211-4
  20. Lee YS, Choi JB, Joo EY, Kim NW, " Antioxidative activities and tyrosinase inhibition of water extracts from Ailanthus altissima.", Journal of Korean Society of Food Science Nutrition, Vol. 36, pp. 1113-1119, 2007. https://doi.org/10.3746/jkfn.2007.36.9.1113