DOI QR코드

DOI QR Code

유전자 발현 데이터 기반 구강암에서의 세포 조성 차이 분석

Distinct cell subtype composition using gene expression data in oral cancer

  • 이제근 (부산대학교 치의학전문대학원 치의생명과학과)
  • Rhee, Je-Keun (Department of Life Science in Dentistry, School of Dentistry, Pusan National University)
  • 투고 : 2019.07.15
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

암 조직에는 다양한 형태의 세포가 존재하지만, 이들의 조성을 실험적으로 확인하기는 매우 어렵다. 본 연구에서는 유전자 발현 데이터에 통계적 기계학습 모델을 적용하여 각 샘플의 세포 조성을 추론하고, 이러한 세포 조성이 암조직과 정상 조직간에 차이가 있는지를 확인하였다. 두 가지 서로 다른 회귀 모델을 이용하여 세포 조성을 예측한 결과 CD8 T cell과 Neutrophil이 구강암 조직에서 정상 조직에 비해 증가함을 확인할 수 있었다. 또한 비지도학습 중 하나인 t-SNE를 적용하여, 유추된 세포 조성에 의해 정상 조직과 구강암 조직이 서로 군집을 이루고 있음을 확인하였고, 지도 학습 기반의 다양한 분류 알고리즘들을 이용하여 세포 조성 정보를 이용하여 구강암과 정상 조직을 예측하는 것이 가능함을 보였다. 이 연구는 구강암의 면역 세포 침투에 대한 이해도를 증진하는데에 도움을 줄 수 있을 것이다.

There are various subtypes of cells in cancer tissues, but it is hard to confirm their composition experimentally. Here, we estimated the cell composition of each sample from gene expression data by using statistical machine learning approaches, two different regression models and investigated whether the cell composition was different between cancer and normal tissue. As a result, we found that CD8 T cell and Neutrophil were increased in oral cancer tissues compared to normal tissues. In addition, we applied t-SNE, which is one of the unsupervised learning, to verify whether normal tissue and oral cancer tissue can be clustered by the derived cell composition. Moreover, we showed that it is possible to predict oral cancer and normal tissue by several supervised classification algorithms. The study would help to improve the understanding of the immune cell infiltration at oral cancer.

키워드

참고문헌

  1. I.. S. Kim. (2016). Gene Polymorphism of $TNF-{\alpha}$ in Korean Generalized Aggressive Periodontitis, Journal of Digital Convergence, 14(1), 321-326. DOI: 10.14400/JDC.2016.14.1.321
  2. B. Y. Choi & S.-C. Cho. (2017). Screening of Natural Compounds for Cancer Prevention by Cytotoxicities and AP-1 Reporter Gene Activities, Journal of Convergence for Information Technology, 7(6), 89-95. DOI: 10.22156/CS4SMB.2017.7.6.089
  3. M. Dougan, G. Dranoff & S. K. Dougan. (2019). Cancer Immunotherapy: Beyond Checkpoint Blockade. Annual Review of Cancer Biology, 3, 55-75 DOI: 10.1146/annurev-cancerbio-030518-055552
  4. V. Thorsson et al. (2018). The Immune Landscape of Cancer. Immunity, 48(4), 812-830. DOI: 10.1016/j.immuni.2018.03.023
  5. A. M. Newman et. al. (2015). Robust Enumeration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12(5), 453. DOI: 10.1038/nmeth.3337
  6. T. Li et. al. (2017). TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77(21), e108-e110. DOI: 10.1158/0008-5472.CAN-17-0307
  7. H. Lee, S. H. Chung & E. J. Choi, (2016) A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm, Journal of Digital Convergence, 14(2), 245-258. DOI: 10.14400/JDC.2016.14.2.245
  8. J. K. Lee & H. W. Lee. (2018) Meltdown Threat Dynamic Detection Mechanism using Decision-Tree based Machine Learning Method, Journal of Convergence for Information Technology, 8(6), 209-215. DOI: 10.22156/CS4SMB.2018.8.6.209
  9. C. H. Peng et. al. (2011). A Novel Molecular Signature Identified by Systems Genetics Approach Predicts Prognosis in Oral Squamous Cell Carcinoma. PloS One, 6(8), e23452. DOI: 10.1371/journal.pone.0023452
  10. V. D. L. Maaten. (2014). Accelerating t-SNE using Tree-based Algorithms. The Journal of Machine Learning Research, 15(1), 3221-3245.
  11. A. Durgeau, Y. Virk, S. Corgnac & F. Mami-Chouaib. (2018). Recent Advances in Targeting CD8 T-cell Immunity for More Effective Cancer Immunotherapy. Frontiers in immunology, 9, 14. DOI: 10.3389/fimmu.2018.00014
  12. C. Fu & A. Jiang. (2018). Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Frontiers in immunology, 9, 3059. DOI: 10.3389/fimmu.2018.03059
  13. S. B. Coffelt, M. D. Wellenstein & K. E. de Visser. (2016). Neutrophils in Cancer: Neutral No More. Nature Reviews Cancer, 16(7), 431. DOI: 10.1038/nrc.2016.52
  14. M. E. Shaul & Z. G. Fridlender. (2019). Tumour-associated Neutrophils in Patients with Cancer. Nature Reviews Clinical Oncology, 1. DOI: 10.1038/s41571-019-0222-4
  15. B. Li, J. S. Liu & X. S. Liu. (2017). Revisit Linear Regression-based Deconvolution Methods for Tumor Gene Expression Data. Genome biology, 18(1), 127. DOI:10.1186/s13059-017-1256-5