DOI QR코드

DOI QR Code

Stem cells and reproduction

  • Lee, Yeonmi (Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kang, Eunju (Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2019.05.15
  • Published : 2019.08.31

Abstract

Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.

Keywords

References

  1. Sherrod RA (2004) Understanding the emotional aspects of infertility: Implications for nursing practice. J Psychosoc Nurs Ment Health Serv 42, 40-47 https://doi.org/10.3928/02793695-20041001-08
  2. Boulet SL, Mehta A, Kissin DM, Warner L, Kawwass JF and Jamieson DJ (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255-263 https://doi.org/10.1001/jama.2014.17985
  3. Verhaak CM, Smeenk JM, Evers AW, Kremer JA, Kraaimaat FW and Braat DD (2007) Women's emotional adjustment to IVF: A systematic review of 25 years of research. Hum Reprod Update 13, 27-36 https://doi.org/10.1093/humupd/dml040
  4. Maleki-Saghooni N, Amirian M, Sadeghi R and Latifnejad Roudsari R (2017) Effectiveness of infertility counseling on pregnancy rate in infertile patients undergoing assisted reproductive technologies: A systematic review and meta-analysis. Int J Reprod Biomed (Yazd) 15, 391-402 https://doi.org/10.29252/ijrm.15.7.391
  5. Edwards RG, Steptoe PC and Purdy JM (1980) Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol 87, 737-756 https://doi.org/10.1111/j.1471-0528.1980.tb04610.x
  6. Devroey P and Van Steirteghem A (2004) A review of ten years experience of ICSI. Hum Reprod Update 10, 19-28 https://doi.org/10.1093/humupd/dmh004
  7. Palermo G, Joris H, Devroey P and Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17-18 https://doi.org/10.1016/0140-6736(92)92425-F
  8. Zegers-Hochschild F, Adamson GD, Dyer S et al (2017) The international glossary on infertility and fertility care. Fertil Steril 108, 393-406 https://doi.org/10.1016/j.fertnstert.2017.06.005
  9. Vaiarelli A, Cimadomo D, Capalbo A et al (2016) Pre-implantation genetic testing in ART: Who will benefit and what is the evidence? J Assist Reprod Genet 33, 1273-1278 https://doi.org/10.1007/s10815-016-0785-2
  10. Lee HS, Ma H, Juanes RC et al (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1, 506-515 https://doi.org/10.1016/j.celrep.2012.03.011
  11. Steffann J, Frydman N, Gigarel N et al (2006) Analysis of mtDNA variant segregation during early human embryonic development: A tool for successful NARP preimplantation diagnosis. J Med Genet 43, 244-247 https://doi.org/10.1136/jmg.2005.032326
  12. Wolf DP, Mitalipov N and Mitalipov S (2015) Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med 21, 68-76 https://doi.org/10.1016/j.molmed.2014.12.001
  13. Tachibana M, Kuno T and Yaegashi N (2018) Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod Med Biol 17, 421-433 https://doi.org/10.1002/rmb2.12230
  14. McGrath J and Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300-1302 https://doi.org/10.1126/science.6857250
  15. Hyslop LA, Blakeley P, Craven L et al (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383-386 https://doi.org/10.1038/nature18303
  16. Tachibana M, Sparman M, Sritanaudomchai H et al (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367-372 https://doi.org/10.1038/nature08368
  17. Tachibana M, Amato P, Sparman M et al (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627-631 https://doi.org/10.1038/nature11647
  18. Kang E, Wu J, Gutierrez NM et al (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540, 270-275 https://doi.org/10.1038/nature20592
  19. Zhang J, Liu H, Luo S et al (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34, 361-368 https://doi.org/10.1016/j.rbmo.2017.01.013
  20. Wakayama T and Yanagimachi R (1998) The first polar body can be used for the production of normal offspring in mice. Biol Reprod 59, 100-104 https://doi.org/10.1095/biolreprod59.1.100
  21. Wakayama T, Hayashi Y and Ogura A (1997) Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J Reprod Fertil 110, 263-266 https://doi.org/10.1530/jrf.0.1100263
  22. Ma H, O'Neil RC, Marti Gutierrez N et al (2017) Functional human oocytes generated by transfer of polar body genomes. Cell Stem Cell 20, 112-119 https://doi.org/10.1016/j.stem.2016.10.001
  23. Reproduction and fertility: How could stem cells help? https://www.eurostemcell.org/reproduction-and-fertility-how-could-stem-cells-help
  24. Hayashi K, Ohta H, Kurimoto K, Aramaki S and Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519-532 https://doi.org/10.1016/j.cell.2011.06.052
  25. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H and Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971-975 https://doi.org/10.1126/science.1226889
  26. Hikabe O, Hamazaki N, Nagamatsu G et al (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299-303 https://doi.org/10.1038/nature20104
  27. Zhou Q, Wang M, Yuan Y et al (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330-340 https://doi.org/10.1016/j.stem.2016.01.017
  28. Sun M, Yuan Q, Niu M et al (2018) Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 25, 747-764 https://doi.org/10.1038/s41418-017-0015-1
  29. Yamashiro C, Sasaki K, Yabuta Y et al (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356-360 https://doi.org/10.1126/science.aat1674
  30. Jung D, Xiong J, Ye M et al (2017) In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 8, 15680 https://doi.org/10.1038/ncomms15680
  31. Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G and Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112 (Pt 5), 601-612 https://doi.org/10.1242/jcs.112.5.601
  32. Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199 https://doi.org/10.1038/nature05972
  33. Brons IG, Smithers LE, Trotter MW et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195 https://doi.org/10.1038/nature05950
  34. Hayashi M, Kawaguchi T, Durcova-Hills G and Imai H (2017) Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 17, 107-114 https://doi.org/10.1002/rmb2.12077
  35. Ma H, Marti-Gutierrez N, Park SW et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548, 413-419 https://doi.org/10.1038/nature23305
  36. Zhang C, Quan R and Wang J (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 27, R79-R88 https://doi.org/10.1093/hmg/ddy120
  37. Tang L, Zeng Y, Du H et al (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics 292, 525-533 https://doi.org/10.1007/s00438-017-1299-z
  38. Kang X, He W and Huang Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/cas-mediated genome editing. J Assist Reprod Genet 33, 581-588 https://doi.org/10.1007/s10815-016-0710-8
  39. Liang P, Ding C, Sun H et al (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811-822 https://doi.org/10.1007/s13238-017-0475-6
  40. Zhou C, Zhang M, Wei Y et al (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8, 772-775 https://doi.org/10.1007/s13238-017-0459-6
  41. Evans MJ and Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 https://doi.org/10.1038/292154a0
  42. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  43. Daughtry B and Mitalipov S (2014) Concise review: Parthenote stem cells for regenerative medicine: Genetic, epigenetic, and developmental features. Stem Cells Transl Med 3, 290-298 https://doi.org/10.5966/sctm.2013-0127
  44. Thomson JA, Kalishman J, Golos TG et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92, 7844-7848 https://doi.org/10.1073/pnas.92.17.7844
  45. Wolf DP, Morey R, Kang E et al (2017) Concise review: Embryonic stem cells derived by somatic cell nuclear transfer: A horse in the race? Stem Cells 35, 26-34 https://doi.org/10.1002/stem.2496
  46. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 https://doi.org/10.1016/j.cell.2006.07.024
  47. Okita K, Ichisaka T and Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317 https://doi.org/10.1038/nature05934
  48. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 https://doi.org/10.1016/j.cell.2007.11.019
  49. Ma H, Morey R, O'Neil RC et al (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177-183 https://doi.org/10.1038/nature13551
  50. Yamada M, Johannesson B, Sagi I et al (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533-536 https://doi.org/10.1038/nature13287
  51. Matoba S and Zhang Y (2018) Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell 23, 471-485 https://doi.org/10.1016/j.stem.2018.06.018
  52. GURDON JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10, 622-640
  53. Thuan NV, Kishigami S and Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56, 20-30 https://doi.org/10.1262/jrd.09-221A
  54. Inoue K, Ogonuki N, Mochida K et al (2003) Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod 69, 1394-1400 https://doi.org/10.1095/biolreprod.103.017731
  55. Wakayama S, Ohta H, Kishigami S et al (2005) Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol Reprod 72, 932-936 https://doi.org/10.1095/biolreprod.104.035105
  56. Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228-1238 https://doi.org/10.1016/j.cell.2013.05.006
  57. Chung YG, Eum JH, Lee JE et al (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14, 777-780 https://doi.org/10.1016/j.stem.2014.03.015
  58. Ziller MJ, Muller F, Liao J et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7, e1002389 https://doi.org/10.1371/journal.pgen.1002389
  59. Dinger TC, Eckardt S, Choi SW et al (2008) Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 26, 1474-1483 https://doi.org/10.1634/stemcells.2007-0877
  60. Mitalipov SM, Nusser KD and Wolf DP (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol Reprod 65, 253-259 https://doi.org/10.1095/biolreprod65.1.253
  61. Tarkowski AK, Witkowska A and Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226, 162-165 https://doi.org/10.1038/226162a0
  62. Chen Z, Liu Z, Huang J et al (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27, 2136-2145 https://doi.org/10.1002/stem.158
  63. Sritanaudomchai H, Ma H, Clepper L et al (2010) Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 25, 1927-1941 https://doi.org/10.1093/humrep/deq144
  64. Yang H, Shi L, Wang BA et al (2012) Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605-617 https://doi.org/10.1016/j.cell.2012.04.002
  65. Li W, Shuai L, Wan H et al (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407-411 https://doi.org/10.1038/nature11435
  66. Ding C, Huang S, Qi Q et al (2015) Derivation of a homozygous human androgenetic embryonic stem cell line. Stem Cells Dev 24, 2307-2316 https://doi.org/10.1089/scd.2015.0031
  67. Paffoni A, Brevini TA, Gandolfi F and Ragni G (2008) Parthenogenetic activation: Biology and applications in the ART laboratory. Placenta 29 Suppl B, 121-125 https://doi.org/10.1016/j.placenta.2008.08.005
  68. Graham CF (1974) The production of parthenogenetic mammalian embryos and their use in biological research. Biol Rev Camb Philos Soc 49, 399-424 https://doi.org/10.1111/j.1469-185X.1974.tb01085.x
  69. Leeb M and Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131-134 https://doi.org/10.1038/nature10448
  70. Wutz A (2014) Haploid mouse embryonic stem cells: Rapid genetic screening and germline transmission. Annu Rev Cell Dev Biol 30, 705-722 https://doi.org/10.1146/annurev-cellbio-100913-012920
  71. Ford CE, Evans EP, Burtenshaw MD, Clegg HM, Tuffrey M and Barnes RD (1975) A functional 'sex-reversed' oocyte in the mouse. Proc R Soc Lond B Biol Sci 190, 187-197 https://doi.org/10.1098/rspb.1975.0086
  72. Hubner K, Fuhrmann G, Christenson LK et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251-1256 https://doi.org/10.1126/science.1083452
  73. Qing T, Shi Y, Qin H et al (2007) Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 75, 902-911 https://doi.org/10.1111/j.1432-0436.2007.00181.x
  74. Taketo T (2015) The role of sex chromosomes in mammalian germ cell differentiation: Can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J Androl 17, 360-366 https://doi.org/10.4103/1008-682X.143306
  75. Tsai MC, Takeuchi T, Bedford JM, Reis MM, Rosenwaks Z and Palermo GD (2000) Alternative sources of gametes: Reality or science fiction? Hum Reprod 15, 988-998 https://doi.org/10.1093/humrep/15.5.988
  76. Fulka J Jr, Martinez F, Tepla O, Mrazek M and Tesarik J (2002) Somatic and embryonic cell nucleus transfer into intact and enucleated immature mouse oocytes. Hum Reprod 17, 2160-2164 https://doi.org/10.1093/humrep/17.8.2160
  77. Tesarik J, Nagy ZP, Sousa M, Mendoza C and Abdelmassih R (2001) Fertilizable oocytes reconstructed from patient's somatic cell nuclei and donor ooplasts. Reprod Biomed Online 2, 160-164 https://doi.org/10.1016/S1472-6483(10)61950-5
  78. Halley-Stott RP and Gurdon JB (2013) Epigenetic memory in the context of nuclear reprogramming and cancer. Brief Funct Genomics 12, 164-173 https://doi.org/10.1093/bfgp/elt011
  79. Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55-70 https://doi.org/10.1016/j.stem.2007.05.014
  80. Marcin Samiec MS (2018) Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? - A review. Annals of Animal Science (Ann Anim Sci) 18, 623-638 https://doi.org/10.2478/aoas-2018-0015