DOI QR코드

DOI QR Code

Optimization Power Management System for electric propulsion system

전기추진시스템용 OPMS 기법 연구

  • Lee, Jong-Hak (Marine Engineering, Korea Maritime and Ocean University) ;
  • Oh, Jin-Seok (Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2019.05.21
  • Accepted : 2019.06.11
  • Published : 2019.08.31

Abstract

The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

자율운항선박의 기반은 추진시스템의 안정성이 중요하며, 추진체계의 안정성을 위하여 다중 발전 체계 및 추진체계를 갖추어야한다. 기존 선박에서는 안정성을 위하여 높은 발전 용량을 산정하며, 그 결과 저부하 운전으로 인한 경제성 하락을 야기한다. 이를 해결하기 위해서는 전력체계의 최적화를 통하여 발전 체계의 경량화와 효율의 증가가 필요하다. 본 논문에서는 전기추진선박용 OPMS(Optimization Power Management System)를 구축한다. OPMS는 하이브리드형 발전시스템, 에너지저장시스템, 부하제어시스템으로 구성된다. 발전시스템은 이중연료엔진, 에너지저장시스템은 배터리, 부하제어시스템은 추진 부하, 상용 부하, 불규칙 부하, 화물 기기 관련 부하, 갑판 부하로 구성된다. 각 시스템별 기기들의 특성에 대하여 모델링하여 전력체계를 구축하였다. 실험을 위하여 선박 운용에 따른 시나리오를 작성하고 안정성 및 경제성을 기존의 전기추진선박과 비교하였다. 실험의 결과 발전기의 비교적 적은 시간 투입으로 같은 전력량을 공급함으로써 선박의 LNG 1.3%, Main Fuel 0.3%, Pilot Fuel 35.1%의 연료소모량 감소를 통하여 경제성 및 안정성을 확인하였다.

Keywords

References

  1. K. Y. Min, "Power management system modeling and characteristics analysis for electric propulsion ship," M.S. Theses, SungKyunKwan University Electronic and Electrical Engineering, korea, 2014.
  2. J. H. Jang, "A Study on Energy Management of Hybrid Power Source for Electric Propulsion System by LCS," Ph. D. dissertation, Korea Maritime & Ocean University Engineering, korea, 2019.
  3. K. K. Lee, "Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers," Journal of Korea Institute of Information and Communication Engineering, vol. 22, no. 7, pp. 949-955, Jul. 2018. https://doi.org/10.6109/JKIICE.2018.22.7.949
  4. S. O. Song, J. H. Lee, H. P. Jeon, B. Y. Seong, K. K. Kim, and S. K. Kim, "A Study on the Three-Dimensional Steady State Temperatrure Distributions and BOR Calculation Program Development for the Membrane Type LNG Carrier," The Society of Air-Conditioning and Refrigerating Engineers of Korea Summer Academic Presentation Conference, pp. 1224-1228, Jun. 1998.
  5. J. T. Hwang, S. Y. Hong, H. U. Kwon, K. K. Lee, and J. H. Song, "Dual Fuel Generator Modeling and Simulation for Development of PMS HILS," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 3, pp. 613-619, Mar. 2017. https://doi.org/10.6109/jkiice.2017.21.3.613
  6. J. K. Nam, and J. W. Kim, " The Introduction of Wärtsilä DF50 Engine for LNG Carrier," Journal of the Korea Society of Marine Engineering, vol. 29, no. 6, pp. 612-617, Sep. 2005.
  7. J. H. Park, P. Y. Lee, S. S. Jang, and J. H. Kim, "Due to the Difference in Uniformity of Electrical Characteristics between Cells in a Battery Pack SOC Estimation Performance Comparative Analysis," Journal of the Korean Institute of Power Electronics, vol. 24, no. 1, pp. 16-24, Feb. 2019.
  8. J. M. Kim, and J. S. Oh, "Hybrid Power Management System Using Fuel Cells and Batteries," Journal of Information and Communication Convergence engineering, vol. 14, no. 2, pp. 122-128, Jun. 2016. https://doi.org/10.6109/jicce.2016.14.2.122
  9. K. H. Cho, Naval Architecture, 2nd. Korea, pp. 341-344, 2016.

Cited by

  1. 전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘 vol.24, pp.9, 2019, https://doi.org/10.6109/jkiice.2020.24.9.1202