DOI QR코드

DOI QR Code

A 2.4-GHz CMOS Power Amplifier with a Bypass Structure Using Cascode Driver Stage to Improve Efficiency

효율 개선을 위해 캐스코드 구동 증폭단을 활용한 바이패스 구조의 2.4-GHz CMOS 전력 증폭기

  • Jang, Joseph (School of Electronic Engineering, Soongsil University) ;
  • Yoo, Jinho (School of Electronic Engineering, Soongsil University) ;
  • Lee, Milim (School of Electronic Engineering, Soongsil University) ;
  • Park, Changkun (School of Electronic Engineering, Soongsil University)
  • Received : 2019.06.23
  • Accepted : 2019.07.09
  • Published : 2019.08.31

Abstract

In this study, we propose a CMOS power amplifier (PA) using a bypass technique to enhance the efficiency in the low-power region. For the bypass structure, the common-gate (CG) transistor of the cascode structure of the driver stage is divided in two parallel branches. One of the CG transistors is designed to drive the power stage for high-power mode. The other CG transistor is designed to bypass the power stage for low-power mode. Owing to a turning-off of the power stage, the power consumption is decreased in low-power mode. The measured maximum output power is 20.35 dBm with a power added efficiency of 12.10%. At a measured output power of 11.52 dBm, the PAE is improved from 1.90% to 7.00% by bypassing the power stage. Based on the measurement results, we verified the functionality of the proposed bypass structure.

본 연구에서는 저전력 영역에서의 효율을 개선하기 위해 바이패스 구조를 갖춘 2.4GHz CMOS 전력 증폭기를 제안한다. 바이패스 구조를 설계하기 위해, 구동 증폭단의 공통 게이트 트랜지스터를 두 개로 분할하였다. 공통 게이트 트랜지스터 중 하나는 고출력 전력 모드를 위한 전력단을 구동하도록 설계된다. 다른 공통 게이트 트랜지스터는 저출력 전력 모드를 위해 전력단을 바이 패스하도록 설계하였다. 측정 된 최대 출력은 20.35 dBm이며 효율은 12.10 %이다. 11.52 dBm의 측정 된 출력에서 효율은 전력증폭단을 바이 패스함으로써 1.90 %에서 7.00 %로 향상됨을 확인하였다. 측정 결과를 바탕으로 제안 된 바이 패스 구조의 타당성을 성공적으로 검증 하였다.

Keywords

References

  1. S.N. Ali, P. Agarwal, L. Renaud, R. Molavi, S. Mirabbasi, P. P. Pande, and D. Heo, "A 40% PAE Frequency-Reconfigurable CMOS Power Amplifier with Tunable Gate -Drain Neutralization for 28-GHz 5G Radios," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2231-2245, May 2018 https://doi.org/10.1109/TMTT.2018.2801806
  2. J. Park, C. Lee, J. Yoo, and C. Park, "A CMOS Antiphase Power Amplifier with an MGTR Technique for Mobile Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4645-4656, Nov. 2017. https://doi.org/10.1109/TMTT.2017.2709304
  3. Y. Jin and S. Hong, "A 2.4-GHz CMOS Common-Gate Combining Power Amplifier with Load Impedance Adaptor," IEEE Microwave and Wireless Components Letters, vol. 27, no. 9, pp. 836-838, Sep. 2017. https://doi.org/10.1109/LMWC.2017.2734748
  4. G. Jeong, T. Joo, and S. Hong, "A Highly Linear and Efficient CMOS Power Amplifier with Cascode-Cascade Configuration," IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 596-598, Jun. 2017. https://doi.org/10.1109/LMWC.2017.2701327
  5. J. Park, C. Lee, and C. Park, "An Asymmetric Broad-Side Coupled Transformer to Reduce the Capacitance for CMOS Power Amplifier Applications," Progress In Electromagnetics Research M, vol. 78, pp. 93-101, Jan. 2019. https://doi.org/10.2528/PIERM18112501
  6. J. Yoo, C. Lee, I. Kang, and C. Park, "2.4-GHz CMOS Linear Power Amplifier for IEEE 802.11n WLAN Applications," Microwave and Optical Technology Letters, vol. 59, no. 3, pp. 546-550, Mar. 2017. https://doi.org/10.1002/mop.30343
  7. J. Park, C. Lee, and C. Park, "A Quad-band CMOS Linear Power Amplifier for EDGE Applications using an Anti-phase Method to Enhance its Linearity," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 64, no. 4, pp. 765-776, Apr. 2017. https://doi.org/10.1109/TCSI.2016.2620559
  8. B. Jin, Y. Kim, J.-L. Woo, S. Park, H. Park, and Y. Kwon, "A linear LTE advanced CMOS RF Power Amplifier with Integrated Phase Linearizer," Microwave and Optical Technology Letters, vol. 59, no. 5, pp. 1119-1122, May 2017. https://doi.org/10.1002/mop.30480
  9. S. Zhao, Y. Ren, and Y. Xu, "A high linearity Doherty power amplifier using Metamaterial based on ferroelectric ceramics," Microwave and Optical Technology Letters, vol. 59, no. 11, pp. 2938-2942, Nov. 2017. https://doi.org/10.1002/mop.30844
  10. O. Olukoya and D. Budimir, "Highly linear balanced power amplifiers for carrier aggregation," Microwave and Optical Technology Letters, vol. 60, no. 3, pp. 529-534, Mar. 2018. https://doi.org/10.1002/mop.31014
  11. C. Zhai and K.-K.M. Cheng, "Dual-Mode CMOS RF Power Amplifier Design Using a Novel Reconfigurable SingleSwitch Single-Inductor Balun," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4585-4594, Oct. 2018. https://doi.org/10.1109/TMTT.2018.2845849
  12. W. Lim, H. Kang, W. Lee, J. Bae, S. Oh, H. Oh, S. Chae, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Dual-Mode CMOS Power Amplifier Based on Load-Impedance Modulation," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1041-1043, Nov. 2018. https://doi.org/10.1109/LMWC.2018.2871339
  13. G. Jeong, S. Kang, T. Joo, and S. Hong, "An Integrated Dual-Mode CMOS Power Amplifier With Linearizing Body Network," IEEE Transactions on Circuits and Systems II-Express Briefs, vol. 64, no. 9, pp. 1037-1041, Sep. 2017. https://doi.org/10.1109/TCSII.2016.2624302
  14. H. Ahn, S. Baek, I. Nam, D. An, J. K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A Fully Integrated Dual-Mode CMOS Power Amplifier With an Autotransformer-Based Parallel Combining Transformer," IEEE Microwave and Wireless Components Letters, vol. 27, no. 9, pp. 833-835, Sep. 2017. https://doi.org/10.1109/LMWC.2017.2734762
  15. Y. Hu and S. Boumaiza, "Doherty Power Amplifier Distortion Correction Using an RF Linearization Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2246-2257, May. 2018. https://doi.org/10.1109/TMTT.2018.2815562
  16. H. Lee, J. Kwon, W. Lim, W. Lee, H. Kang, K. C. Hwang, K.-Y. Lee, C.-S. Park, and Y. Yang., "Optimized Current of the Peaking Amplifier for Two-Stage Doherty Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 209-217, Jan. 2017. https://doi.org/10.1109/TMTT.2016.2613050
  17. Y. Sim, I. Kang, and C. Park, "A CMOS Power Amplifier Using a Split Cascode Structure to Enhance Its Efficiency," Microwave and Optical Technology Letters, vol. 58, no. 2, pp. 309-312, Feb. 2016. https://doi.org/10.1002/mop.29558
  18. C. Yoo, U. Kim, Y. Kwon, and J. Kim, "Helix on Pad-Type Ultra Small-Size Power Amplifiers for WCDMA Handset Applications," IEEE Microwave and Wireless Components Letters, vol. 19, no. 12, pp. 825-827, Dec. 2009. https://doi.org/10.1109/LMWC.2009.2033530
  19. C. Park, Y. Kim, H. Kim, and S. Hong, "A 1.9-GHz Triple-Mode Class-E Power Amplifier for a Polar Transmitter," IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 148-150, Feb. 2007. https://doi.org/10.1109/LMWC.2006.890345
  20. K. Son, C. Park, and S. Hong, "A 1.8-GHz CMOS Power Amplifier Using Stacked nMOS and pMOS Structures for High-Voltage Operation," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2652-2660, Nov. 2009. https://doi.org/10.1109/TMTT.2009.2031936
  21. T. Joo, B. Koo, and S. Hong, "A WLAN RF CMOS PA with large signal MGTR method," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1272 -1279, Mar. 2013. https://doi.org/10.1109/TMTT.2013.2244228
  22. E. Kaymaksut and P. Reynaert, "Transformer based uneven Doherty power amplifier in 90nm CMOS for WLAN applications," IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1659-1671, Jul. 2012. https://doi.org/10.1109/JSSC.2012.2191334
  23. Y. Yin, X. Yu, Z. Wang, and B. Chi, "An efficiency-enhanced stacked 2.4-GHz CMOS power amplifier with mode switching scheme for WLAN applications," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 672-682, Feb. 2015. https://doi.org/10.1109/TMTT.2014.2387838