DOI QR코드

DOI QR Code

Design of QoS based MAC protocol considering data urgency for Energy harvesting wireless sensor networks

에너지 하베스팅 센서네트워크에서 데이터의 긴급성을 고려한 QoS기반 MAC프로코콜 설계

  • Park, Gwanho (School of Electrical Electronic and Communication Engineering, KOREATECH) ;
  • Park, Hyung-Kun (School of Electrical Electronic and Communication Engineering, KOREATECH)
  • Received : 2019.05.26
  • Accepted : 2019.06.11
  • Published : 2019.08.31

Abstract

In the EH-WSN (Energy harvesting wireless sensor network), a MAC (medium access control) protocol is required to select a relay node considering the power status of a node. Existing EH-WSN studies emphasize the power aspect, so it does not consider the QoS like the urgency of the sensed data. The required power and transmission delay must be changed according to the urgency so that the medium access control according to the data QoS can be performed. In case of relay node, relaying data without consideration of data urgency and node power may cause delay due to power shortage in case of urgent data. In this paper, we designed a MAC protocol that minimizes the power shortage that can occur during emergency data generation. For this, relay node requirements are set differently according to the urgency of data. The performance was analyzed through simulation. Simulation results show the reduced latency and improved reliability of urgent data transmission.

에너지 하베스팅 센서네트워크에서는 노드의 전력상황을 고려하여 중계노드를 선택하는 매체접근제어 프로토콜이 요구된다. 기존의 EH-WSN (Energy harvesting wireless sensor network)의 연구들은 전력측면을 강조하다보니 센싱된 데이터의 긴급성과 같은 QoS (Quality of Service)를 크게 고려하지 못했다. 데이터의 긴급성에 따라 요구되는 전력 상황과 전송지연이 달라지도록 하여 데이터의 QoS에 맞는 매체접근이 이루어질 수 있도록 해야 한다. 중계노드의 경우 긴급하지 않은 상황에서 전력에 상관없이 모든 데이터를 중계하게 되면 막상 긴급 데이터가 발생할 경우 전력문제로 인해 지연이 크게 발생하는 상황이 생길 수 있다. 본 논문에서는 데이터의 긴급성에 따라 중계노드에 요구되는 전력상황을 다르게 설정함으로써 긴급데이터 발생 시에 발생할 수 있는 전력부족상황을 최소화하는 매체접근제어프로토콜을 설계하고 시뮬레이션을 통해 그 성능을 분석하였다. 성능분석결과 긴급데이터의 시간지연 및 신뢰성 성능이 향상됨을 확인할 수 있었다.

Keywords

References

  1. M. L. Ku, W. Li, Y. Chen, and K. J. Ray Liu, "Advances in Energy Harvesting Communications: Past, Present, and Future Challenges," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1384-1412, 2016. https://doi.org/10.1109/COMST.2015.2497324
  2. J. Yi, M. Kang, and D. Noh, "Solar Energy Harvesting Wireless Sensor Network Simulator," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 2, pp. 477-485, Feb. 2015. https://doi.org/10.6109/jkiice.2015.19.2.477
  3. T. Ruan, Z. J. Chew, and M. Zhen, "Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes," IEEE Sensors Journal, vol. 17, no. 7, Apr. 2017.
  4. P. Ramezani, and M. R. Pakravan, "Overview of MAC protocols for energy harvesting wireless sensor networks," in procceding of the IEEE 26th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Hongkong, pp. 2032-2037, Aug. 2015.
  5. S. Kosunalp, "MAC protocols for energy harvesting wireless sensor networks: survey," ETRI journal, vol. 37, no. 4, pp. 804-812, Aug. 2015. https://doi.org/10.4218/etrij.15.0115.0017
  6. J. S. Karthi, S. V. Rao, and S. S. Pillai, "Duty cycle adapted MAC for wireless sensor networks with envergy harvesting," in the proceeding of Proc. of international conference on control, communication & computing, pp. 685-689, Nov. 2015.
  7. S. Du, A.K. Saha, and D. B. Johnson, "R-MAC: a routing-enhanced duty-cycle MAC protocol for wireless sensor networks," in the proceeding of IEEE international conference on computer communications, pp. 1478-1486, May. 2007.
  8. F. Tong, M. Ni, L. Shu, and J. Pan, "A pipelined-forwarding, routing-integrated and effectively-identifying MAC for large-scale WSN," in the proceeding of IEEE global communications conference, Dec. 2013.
  9. H. I. Liu, W. J. He, and W. K. Seah, "LEB-MAC: Load and Energy Balancing MAC protocol for energy harvesting powered wireless sensor networks," in the proceeding of IEEE international conference on parallel and distributed systems, Dec. 2014.
  10. K.Shim, and H. Park, "A Power-based Pipelined-forwarding MAC protocol for Energy Harvesting Wireless Sensor Networks," The Transactions of the Korean Institute of Electrical Engineers, vol. 68, no. 1, pp. 98-101, Jan. 2019. https://doi.org/10.5370/KIEE.2019.68.1.98
  11. H.Park, "Sensed Data based Duty-Cycle Scheduling Scheme for Energy Harvesting Wireless Sensor Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 4, pp. 670-675, Apr. 2018. https://doi.org/10.6109/JKIICE.2018.22.4.670
  12. C. Shen, and S. Chen, "A cyber-physical design for indoor temperature monitoring using wireless sensor networks," in Proccedings of IEEE wireless Communications and Networking Conference, San Francisco: CA, pp. 1-6, Mar. 2017.
  13. Z. A. Eu, H. P. Tan, W.K.G. Seah, "Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting," Ad Hoc networks, vol.9, no. 3, pp.300-323, May. 2011. https://doi.org/10.1016/j.adhoc.2010.07.014