DOI QR코드

DOI QR Code

Corrosion Prediction of Metallic Cultural Heritage Assets by EIS

  • Angelini, E. (Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino) ;
  • Grassini, S. (Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino) ;
  • Parvis, M. (Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino) ;
  • Zucchi, F. (Dipartimento di Chimica, Universita di Ferrara)
  • Received : 2019.03.12
  • Accepted : 2019.08.23
  • Published : 2019.08.30

Abstract

Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions.

Keywords

References

  1. A. J. Howard, Int. J. Herit. Stud., 19, 632 (2013). https://doi.org/10.1080/13527258.2012.681680
  2. B. Marzeion and A. Levermann, Environmental Research Letters, 9, Article No. 034001 (2014).
  3. D. De la Fuente, J. M. Vega, F. Viejo, I. Diaz, and M. Morcillo, J. Cult. Herit., 14, 138 (2013). https://doi.org/10.1016/j.culher.2012.05.002
  4. I. Rorig-Dalgaard, Mater. Struct., 46, 959 (2013). https://doi.org/10.1617/s11527-012-9946-7
  5. P. C. Dawson, M. M. Bertulli, R. Levy, C. Tucker, L. Dick, and P. L. Cousins, Application of 3D Laser Scanning to the Preservation of Fort Conger, a Historic Polar Research Base on Northern Ellesmere Island, Arctic Canada, Artic, 66, 147 (2013).
  6. Z. Huijbregts , R. P. Kramer, M. H. J. Martens, A. W. M. van Schijndel, and H. L. Schellen, Build. Environ., 55, 43 (2012). https://doi.org/10.1016/j.buildenv.2012.01.008
  7. F. J. Garcia-Diego, A. Fernandez-Navajas , P. Beltran, and P. Merello, Study of the Effect of the Strategy of Heating on the Mudejar Church of Santa Maria in Ateca (Spain) for Preventive Conservation of the Altarpiece Surroundings, Sensors, 13, 11407 (2013). https://doi.org/10.3390/s130911407
  8. E. Angelini, S. Grassini, D. Mombello, A. Neri, and M. Parvis, Appl. Mech. Mater., 100, 919 (2010).
  9. E. Angelini, T. De Caro, A. Mezzi, C. Riccucci, F. Farandi, and S. Grassini, Surf. Interface Anal., 44, 947 (2012). https://doi.org/10.1002/sia.3854
  10. G. M. Ingo, G. Guida, E. Angelini, G. Di Carlo, A. Mezzi, and G. Padeletti, Accounts Chem. Res., 46, 2365 (2013). https://doi.org/10.1021/ar300232e
  11. M. A. Emami and M. Bighan, Surf. Eng., 29, 128 (2013). https://doi.org/10.1179/174329413X13601473753808
  12. E. Rocca and F. Mirambet, J. Solid State Electrochem., 14, 415 (2010). https://doi.org/10.1007/s10008-009-0889-z
  13. V. Costa and L. Robbiola, Actual. Chimique, 327-28, 27-32 (2009).
  14. S. Grassini, Electrochemical Impedance Spectroscopy (EIS) for the in-situ analysis of metallic heritage artefacts (In) Corrosion and conservation of cultural heritage metallic artefacts / P.Dillmann, D. Watkinson, E. Angelini, A. Adriens (EFC-WP21 on Corrosion of Archaeological and Historical Artefacts), pp. 347-367, Woodhead Publishing Limited, Cambridge (2013).
  15. E. Cano, D. Lafuente, and D. M. Bastidas, J. Solid State Electrochem., 14, 381 (2010). https://doi.org/10.1007/s10008-009-0902-6
  16. E. Angelini, S. Corbellini, M. Parvis, F. Ferraris, and S. Grassini, Proc. Instrumentation and Measurement Technology Conf., I2MTC2014, May 12-15, Montevideo, Uruguay (2014).
  17. E. Angelini, A. Carullo, S. Corbellini, F. Ferraris, V. Gallone, S. Grassini, M. Parvis, and A. Vallan, IEEE T. Instrum/ Meas., 55, 436 (2006). https://doi.org/10.1109/TIM.2006.870103
  18. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, Eds., Wiley-Interscience (2005).
  19. J. Monnier, L. Bellot-Gurlet, D. Baron, D. Neff, I. Guillot, and P. Dillmann, J. Raman Spectrosc., 42, 773 (2011). https://doi.org/10.1002/jrs.2765
  20. M. Stratmann, Proc. 201st Meeting, Corrosion Science; A retrospective and current status in honor of Robert, 13, pp. 89 - 103, Electrochemical Society Series, Abstact No. 308, Philadelphia (2002).
  21. M. Morcillo, I. Diaz, B. Chico, H. Cano, and D. de la Fuente, Corros. Sci., 83, 6 (2014). https://doi.org/10.1016/j.corsci.2014.03.006
  22. P. Montoya, I. Diaz, N. Granizo, D. de la Fuente, and M. Morcillo, Mater. Chem. Phys., 142, 220 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.009