References
- Laroche, E., Fenot, M., Dorignac, E., Vuillerme, J., Brizzi, L. E., Larroya, J. C., 2017, "A combined experimental and numerical investigation of the flow and heat transfer inside a turbine vane cooled by jet impingement", J. Turbomach 140(3), 031002 (9 pages)
- H. Wang, W. Yu, Q. Cai, 2012, "Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling", J. Mater. Process. Technol. 212 (9) 1825-1831. https://doi.org/10.1016/j.jmatprotec.2012.04.008
- P.A. de Oliveira, J.R. Barbosa Jr., 2017, "Novel two-phase jet impingement heat sink for active cooling of electronic devices", Appl. Therm. Eng. 12, 952-964.
- N. Zuckerman, N. Lior, 2006, "Jet impingement heat transfer: physics, correlations, and numerical modeling", Adv. Heat Transf. 39, 565-631. https://doi.org/10.1016/S0065-2717(06)39006-5
- S. Gartlein, R. Woszidlo, F. Ostermann, C.N. Nayeri, C.O. Paschereit, 2014, "The time resolved internal and external flow field properties of a fluidic oscillator", in:52nd AIAA Aerospace Science Meeting, p. 1143.
- M. Koklu, 2016, "Effect of a Coanda extension on the performance of a sweeping-jet actuator", AIAA J. 54 (3), 1131-1134. https://doi.org/10.2514/1.J054448
- B.C. Bobusch, R. Woszidlo, J.M. Bergada, C.N.N. Nayeri, C.O. Paschereit, 2013, "Experimental study of the internal flow structures inside a fluidic oscillator", Exp. Fluids 54 (6), 1559. https://doi.org/10.1007/s00348-013-1559-6
- C. Cerretelli, K. Kirtley, 2009, "Boundary layer separation control with fluidic oscillators", J. Turbomach., 131, p. 041001. https://doi.org/10.1115/1.3066242
- M.A. Hossain, L. Agricola, A. Ameri, J.W. Gregory, J.P. Bons, 2018, "Sweeping jet film cooling on a turbine vane", Proc. ASME Turbo Expo 2018, GT2018-77099.
- R.B. Beale, M.T. Lawler, 1974, "in: Flow: Its Measurement and Control in Science and Industry" Instrument Society of America, pp. 989-996.
- X. Wen, Y. Liu, H. Tang, 2018, "Unsteady behavior of a sweeping impinging jet: time resolved particle image velocimetry measurements", Exp. Therm Fluid Sci. 96, 111-127. https://doi.org/10.1016/j.expthermflusci.2018.02.033
- S.H. Kim, H.D. Kim, 2019, "Quantitative visualization of the three-dimensional flow structures of a sweeping jet", J. Visualization. 22, 437-447. https://doi.org/10.1007/s12650-018-00546-1
- L. Agricola, M.A. Hossain, R. Prenter, R. Lundgreen, A. Ameri, J. Gregory, J.P. Bons, 2017, "Impinging sweeping jet heat transfer", in: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, p. 4974.
- T. Park, K. Kara, D. Kim, 2018, "Flow structure and heat transfer of a sweeping jet impinging on a flat wall", Int. J. Heat Mass Transf. 124, 920-928. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.016
- S.H. Kim, H.D. Kim, K.C. Kim, 2019, "Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet", Int. J. Heat Mass Transf. 136, 415-426. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.021
- S.J. Yi, H.D. Kim, K.C. Kim, 2014, "Decay-slope method for 2-dimensional temperature field measurement using thermographic phosphors", Exp. Therm Fluid Sci. 59, 1-8. https://doi.org/10.1016/j.expthermflusci.2014.07.007