DOI QR코드

DOI QR Code

Fabrication and thermal stability of flower-like CeO2 with high surface area via anisotropic crystallization of carbonate precipitation

탄산염 침전 전구체의 결정 이방성 제어를 통한 고 비표면적 flower-like CeO2 분말의 제조 및 고온 안정성 평가

  • Kim, Hanbit (Energy Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Shin, Tae Ho (Energy Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET))
  • 김한빛 (한국세라믹기술원 에너지소재본부) ;
  • 신태호 (한국세라믹기술원 에너지소재본부)
  • Received : 2019.07.11
  • Accepted : 2019.08.12
  • Published : 2019.08.31

Abstract

Cerium oxide ($CeO_2$, often called as Ceria) is one of the valuable rare earth oxide materials, which has been widely used for high temperature applications such as solid oxide fuel cells, automotive three-way catalysts and oxygen storage capacity. Considering those application, it is important to improve high redox and thermal stability with high surface morphology because the high surface area of $CeO_2$ could improve the catalytic reactivity at high temperature conditions. Herein we successfully fabricated hierarchical flower-like $CeO_2$ deposited via controlling pathway of precipitation reaction to supply carbonate ion lead to the flower-like morphology. The hexagonal lattice system of precipitated precursor shows better thermal stability then orthorhombic one during thermal cycling condition.

산화세륨($CeO_2$)는 고체산화물연료전지, 자동차 삼원 촉매, 산소 캐패시터 소재 등의 고온환경에서 구동되는 촉매 응용분야에 널리 활용되고 있으며 중요한 희토류 산화물 중에 하나이다. 고온 환경에서 $CeO_2$의 우수한 촉매 활성을 유지하기 위하여 초기 합성단계에서 높은 비표면적을 갖는 미세구조제어 연구와 나노 미세구조가 고온 열 사이클과 산화-환원 사이클 변화에서 안정하도록 하는 연구가 필요하여 많은 연구가 진행되고 있다. 따라서 본 연구에서는 탄산염 침전법의 전구체 결정화 단계에서의 이방성을 정밀 제어하여 고 비표면적의 flower-like $CeO_2$를 성공적으로 합성할 수 있었다. 또한, 서로 다른 탄산염이온 침전제의 침전 반응 경로 제어를 통한 침전 수화물 전구체의 이방적 결정 특성으로부터 최종 고 비표면적 $CeO_2$ 산화물의 미세구조 제어와 고온 안정 제어를 확인하고 특성을 평가하였다.

Keywords

References

  1. A. Trovarelli, C. de Leitenburg, M. Boaro and G. Dolcetti, "The utilization of ceria in industrial catalysis", Catal. Today 50 (1999) 353. https://doi.org/10.1016/S0920-5861(98)00515-X
  2. B.C.H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature 414 (2001) 345. https://doi.org/10.1038/35104620
  3. Y. Li, Q. Sun, M. Kong, W. Shi, J. Huang, J. Tang and X. Zhao, "Coupling oxygen ion conduction to photocatalysis in mesoporous nanorod-like ceria significantly improves photocatalytic efficiency", J. Phys. Chem. C 115 (2011) 14050. https://doi.org/10.1021/jp202720g
  4. S. Wang and G.Q. Lu, "Role of $CeO_2\;in\;Ni/CeO_2-Al_2O_3$ catalysts for carbon dioxide reforming of methane", Appl. Catal. B-Environ. 19 (1998) 267. https://doi.org/10.1016/S0926-3373(98)00081-2
  5. C. Ho, J.C. Yu, T. Kwong, A.C. Mak and S. Lai, "Morphology-controllable synthesis of mesoporous $CeO_2$ nano- and microstructures", Chem. Mater. 17 (2005) 4514. https://doi.org/10.1021/cm0507967
  6. J.H. Jean and T.A. Ring, "Effect of a sterically stabilizing surfactant on the nucleation, growth and agglomeration of monosized ceramic powders", Colloids and Surfaces 29 (1988) 273. https://doi.org/10.1016/0166-6622(88)80123-9
  7. J.-G. Li, T. Ikegami, Y. Wang and T. Mori, "Reactive ceria nanopowders via carbonate precipitation", J. Am. Ceram. Soc. 85 (2002) 2376. https://doi.org/10.1111/j.1151-2916.2002.tb00465.x
  8. E. Matijevic and W.P. Hsu, "Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III)", J. Colloid Interf. Sci. 118 (1987) 506. https://doi.org/10.1016/0021-9797(87)90486-3
  9. M. Oikawa and S. Fujihara, "Crystal growth of $Ce_2O(CO_3)_2{\cdot}H_2O$ in aqueous solutions: Film formation and samarium doping", J. Solid State Chem. 178 (2005) 2036. https://doi.org/10.1016/j.jssc.2005.04.017
  10. Y. Minamidate, S. Yin and T. Sato, "Synthesis of monodispersed rod-like and spherical $CeO_2$ particles by mild solution process", IOP Conf: Materials Science and Engineering 1 (2009) 012003. https://doi.org/10.1088/1757-8981/1/1/012003
  11. Z. Guo, F. Du and Z. Cui, "Hydrothermal synthesis of single-crystalline $CeCO_3OH$ flower-like nanostructures and their thermal conversion to $CeO_2$", Mater. Chem. Phys. 113 (2009) 53. https://doi.org/10.1016/j.matchemphys.2008.07.029
  12. F. Hrizi, H. Dhaouadi and F. Touati, "Cerium carbonate hydroxide and ceria micro/nanostructures: Synthesis, characterization and electrochemical properties of $CeCO_3OH$", Ceram. Int. 40 (2014) 25. https://doi.org/10.1016/j.ceramint.2013.05.098
  13. Z. Guo, F. Du and Z. Cui, "Synthesis and characterization of bundle-like structures consisting of single crystal $Ce(OH)CO_3$ nanorods", Mater 61 (2007) 694.
  14. M.-Y. Cho, K.-C. Roh, S.-M. Park, H.-J. Choi and J.-W. Lee, "Control of particle size and shape of precursors for ceria using ammonium carbonate as a precipitant", Mater 64 (2010) 323.