DOI QR코드

DOI QR Code

Development of Ultra-Thin TiO2 Coated WO3 Inverse Opal Photoelectrode for Dye-Sensitized Solar Cells

염료감응형 태양전지로의 응용을 위한 얇은 TiO2가 코팅 된 WO3 역오팔 광전극의 개발

  • Arunachalam, Maheswari (Department of Chemistry, Chonnam National University) ;
  • Kwag, Seoui (Gwangju Science Academy For the Gifted) ;
  • Lee, Inho (Gwangju Science Academy For the Gifted) ;
  • Kim, Chung Soo (Testing Analysis Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sang-Kwon (Department of Chemistry Education, Chonnam National University) ;
  • Kang, Soon Hyung (Department of Chemistry Education, Chonnam National University)
  • ;
  • 곽서의 (과학영재학교 광주과학고등학교) ;
  • 이인호 (과학영재학교 광주과학고등학교) ;
  • 김청수 (한국세라믹기술원 시험분석센터) ;
  • 이상권 (전남대학교 화학교육과) ;
  • 강순형 (전남대학교 화학교육과)
  • Received : 2019.07.10
  • Accepted : 2019.07.29
  • Published : 2019.08.27

Abstract

In this study, we prepare pure $WO_3$ inverse opal(IO) film with a thickness of approximately $3{\mu}m$ by electrodeposition, and an ultra-thin $TiO_2$ layer having a thickness of 2 nm is deposited on $WO_3$ IO film by atomic layer deposition. Both sets of photoelectrochemical properties are evaluated after developing dye-sensitized solar cells(DSSCs). In addition, morphological, crystalline and optical properties of the developed films are evaluated through field-emission scanning electron microscopy(FE-SEM), High-resolution transmission electron microscopy(HR-TEM), X-ray diffraction(XRD) and UV/visible/infrared spectrophotometry. In particular, pure $WO_3$ IO based DSSCs show low $V_{OC}$, $J_{SC}$ and fill factor of 0.25 V, $0.89mA/cm^2$ and 18.9 %, achieving an efficiency of 0.04 %, whereas the $TiO_2/WO_3$ IO based DSSCs exhibit $V_{OC}$, $J_{SC}$ and fill factor of 0.57 V, $1.18mA/cm^2$ and 50.1 %, revealing an overall conversion efficiency of 0.34 %, probably attributable to the high dye adsorption and suppressed charge recombination reaction.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. A. Yella, H. -W. Lee, H. N. Tsao, C. Yi, S. M. Zakeeruddin and M. Gratzel, Science, 334, 629 (2011). https://doi.org/10.1126/science.1209688
  3. M. McCune, W. Zhang and Y. Deng, Nano Lett., 12, 3656 (2012). https://doi.org/10.1021/nl301407b
  4. R. Ghosh, M. K. Brennaman, T. Uher, M.-R. Ok, E. T. Samulski, L. E. McNeil, T. J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces, 3, 10 (2010).
  5. S. Burnside, J. -E. Moser, K. Brooks, M. Gratzel and D. Cahen, J. Phys. Chem. B, 103, 9328 (1999). https://doi.org/10.1021/jp9913867
  6. H. Zheng, Y. Tachibana and K. Kalantar-zadeh, Langmuir, 26, 19148 (2010). https://doi.org/10.1021/la103692y
  7. S. H. Kang, S. -H. Choi, M. -S. Kang, J. -Y. Kim, H. -S. Kim, T. Hyeon and Y. -E. Sung, Adv. Mater., 20, 54 (2008). https://doi.org/10.1002/adma.200701819
  8. Y. O. Kim, S. -H. Yu, K. -S. Ahn, S. K. Lee and S. H. Kang, J. Electroanal. Chem., 752, 25 (2015). https://doi.org/10.1016/j.jelechem.2015.05.031
  9. H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider and M. Eich, Opt. Mater. Express, 3, 1007 (2013). https://doi.org/10.1364/OME.3.001007
  10. G. Yun, M. Arunachalam and S. H. Kang, J. Phys. Chem. C, 120, 5906 (2016). https://doi.org/10.1021/acs.jpcc.6b00044
  11. F. M. Rajab, J. Miner. Mater. Charact. Eng., 2, 169 (2014). https://doi.org/10.4236/jmmce.2014.23021
  12. J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Renew. Sustainable Energy Rev., 68, 234 (2017). https://doi.org/10.1016/j.rser.2016.09.097
  13. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner and H. J. Snaith, Nano Lett., 11, 438 (2011). https://doi.org/10.1021/nl1031106
  14. X. Hu and H. Wang, Front. Optoelectronics, 11, 285 (2018). https://doi.org/10.1007/s12200-018-0758-4