DOI QR코드

DOI QR Code

Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite

  • Kim, Hyun-cheol (Unit of Arctic Sea Ice Prediction, Korea Polar Research Institute) ;
  • Chae, Tae-Byeong (Satellite Operation & Application Center, Korea Aerospace Research Institute)
  • Received : 2019.08.04
  • Accepted : 2019.08.22
  • Published : 2019.08.31

Abstract

Arctic warming is a global issue. The sea ice in the Arctic plays a crucial role in the climate system. We thought that a recent abnormality in many countries in the northern hemisphere could be related to the effects of shrinking sea ice in the Arctic. Many research groups monitor sea ice in the Arctic for climate research. Satellite remote sensing is an integral part of Arctic sea ice research due to the Arctic's large size, making it difficult to observe with general research equipment, and its extreme environment that is difficult for humans to access. Along with monitoring recent weather changes, Korea scientists are conducting polar remote sensing using a Korean satellite series to actively cope with environmental changes in the Arctic. The Korean satellite series is known as KOMPSAT (Korea Multi-Purpose Satellite, Korean name is Arirang) series, and it carries optical and imaging radar. Since the organization of the Satellite Remote Sensing and Cryosphere Information Center in Korea in 2016, Korean research on and monitoring of Arctic sea ice has accelerated rapidly. Moreover, a community of researchers studying Arctic sea ice by satellite remote sensing increased in Korea. In this article, we review advances in Korea's remote sensing research for the polar cryosphere over the last several years. In addition to satellite remote sensing, interdisciplinary studies are needed to resolve the current limitations on research on climate change.

Keywords

References

  1. Bokhorst, S., Pedersen, S.H., Brucker, L., Anisimov, O., Bjerke, J.W., Brown, R.D., Ehrich, D., Essery, R.L.H., Heilig, A., Ingvander, S., Johansson, C., Johansson, M., Jónsdóttir, I.S., Inga, N., Luojus, K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G.N., Sato, A., Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S.A., Terzago, S., Vikhamar-Schuler, D., Williamson, S., Qiu, Y., Callaghan, T.V., 2016. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516-537. https://doi.org/10.1007/s13280-016-0770-0
  2. Chang, L., Gao, G., Li, Y., Zhang, Y., Zhang, C., Zhang, Y., Feng, G., 2019. Variations in Water Vapor From AIRS and MODIS in Response to Arctic Sea Ice Change in December 2002-November 2016. IEEE Transactions on Geoscience and Remote Sensing, 1-11.
  3. Chu, G., Sun, Q., Zhu, Q., Shan, Y., Shang, W., Ling, Y., Su, Y., Xie, M., Wang, X., Liu, J., 2017. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation. Quaternary Science Reviews 177, 120-129. https://doi.org/10.1016/j.quascirev.2017.10.014
  4. Dong, L., Mitra, C., Greer, S., Burt, E., 2018. The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study. Atmosphere 9, 33. https://doi.org/10.3390/atmos9010033
  5. Forsberg, R., Sorensen, L., Simonsen, S., Barletta, V., Kusk, A., Nagler, T., Hetzenecker, M., Shepherd, A., Groh, A., Solgaard, A., Engdahl, M., 2018. 25 Year Time Series of Multiple-Satellite Ice Sheet Changes: the ESA Climate Change Initiative. 200.
  6. Han, H., Kim, H.-c., 2018. Evaluation of summer passive microwave sea ice concentrations in the Chukchi Sea based on KOMPSAT-5 SAR and numerical weather prediction data. Remote Sensing of Environment 209, 343-362. https://doi.org/10.1016/j.rse.2018.02.058
  7. Kaljord, A.H., Andersen, S.I., 2018. Integration of Multi-Mission Satellite Data, Weather and Ice Information for Arctic Operations, OTC Arctic Technology Conference. Offshore Technology Conference, Houston, Texas, USA, p. 11.
  8. Kim, B.-M., Hong, J.-Y., Jun, S.-Y., Zhang, X., Kwon, H., Kim, S.-J., Kim, J.-H., Kim, S.-W., Kim, H.-K., 2017. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Scientific Reports 7, 40051. https://doi.org/10.1038/srep40051
  9. Kim, H.-c., Han, H., Hyun, C.-U., Chi, J., Son, Y.-s., Lee, S., 2018. Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice. Korean Journal of Remote Sensing 34, 1283-1298. https://doi.org/10.7780/KJRS.2018.34.6.2.12
  10. Knutti, R., Rogelj, J., Sedlaeek, J., Fischer, E.M., 2015. A scientific critique of the two-degree climate change target. Nature Geoscience 9, 13. https://doi.org/10.1038/ngeo2595
  11. Park, J.-W., Kim, H.-C., Hong, S.-H., Kang, S.-H., Graber, H.C., Hwang, B., Lee, C.M., 2016. Radar backscattering changes in Arctic sea ice from late summer to early autumn observed by space-borne X-band HHpolarization SAR. Remote Sensing Letters 7, 551-560. https://doi.org/10.1080/2150704X.2016.1165881
  12. Plummer, S., Lecomte, P., Doherty, M., 2017. The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System. Remote Sensing of Environment 203, 2-8. https://doi.org/10.1016/j.rse.2017.07.014
  13. Ronalds, B., Barnes, E., Hassanzadeh, P., 2018. A Barotropic Mechanism for the Response of Jet Stream Variability to Arctic Amplification and Sea Ice Loss. Journal of Climate 31, 7069-7085. https://doi.org/10.1175/JCLI-D-17-0778.1
  14. Saunier, S., Northrop, A., Lavender, S., Galli, L., Ferrara, R., Mica, S., Biasutti, R., Goryl, P., Gascon, F., Meloni, M., Desclee, B., Altena, B., 2017. European Space agency (ESA) Landsat MSS/TM/ETM+/OLI archive: 42 years of our history, 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), pp. 1-9.
  15. Serreze, M.C., Barry, R.G., 2014. The Arctic Climate System, 2 ed. Cambridge University Press.
  16. Serreze, M.C., Stroeve, J., 2015. Arctic sea ice trends, variability and implications for seasonal ice forecasting. 373.
  17. The White House, 2013. National Strategy For The Arctic Region.
  18. Tschudi, M.A., Stroeve, J.C., Stewart, J.S., 2016. Relating the Age of Arctic Sea Ice to its Thickness, as Measured during NASA's ICESat and IceBridge Campaigns. Remote Sensing 8, 457. https://doi.org/10.3390/rs8060457
  19. Wu, Z., Wang, X., 2018. Variability of Arctic Sea Ice (1979-2016). Water 11, 23. https://doi.org/10.3390/w11010023
  20. Zakharova, E., Nielsen, K., Krylenko, I., Kouraev, A., 2018. Potential of the Radar Altimetry for Estimation of the River Input to the Arctic Ocean. 103. Abstract from 25 years of progress in radar altimetry symposium, Portugal.
  21. Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S.U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrom, A.P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L.N., Caceres, B.E., Casassa, G., Cobos, G., Davila, L.R., Delgado Granados, H., Demuth, M.N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Ove Hagen, J., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V.V., Portocarrero, C.A., Prinz, R., Sangewar, C.V., Severskiy, I., Sigurosson, O., Soruco, A., Usubaliev, R., Vincent, C., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61, 745-762. https://doi.org/10.3189/2015JoG15J017
  22. Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S.U., Gartner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., Cogley, J.G., 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382-386. https://doi.org/10.1038/s41586-019-1071-0