DOI QR코드

DOI QR Code

메소모델을 사용한 비균질성을 고려한 콘크리트의 수축 해석

Heterogeneous Simulation on Concrete Shrinkage using Meso-model

  • 투고 : 2019.08.01
  • 심사 : 2019.08.28
  • 발행 : 2019.09.01

초록

콘크리트는 시멘트와 골재를 포함한 복합재료로써 건조 수축이라는 특성을 가지고 있으며, 이에 대하여 많은 연구가 콘크리트를 균질재료로 가정하여 수행되어 왔다. 그러나, 수축은 콘크리트를 구성하는 특정 구성 성분에만 작용하는 현상이기 때문에 기존의 평균화된 유효물성(effective properties)의 개념으로 규명하기에는 어려움이 있다. 따라서, 본 논문에서는 콘크리트의 특징적인 거동 중의 하나이며 지금까지 많은 연구들이 수행되어 왔지만, 아직 불확실성이 많은 콘크리트의 수축 현상을 비균질성을 고려한 전산해석(heterogeneous simulation)을 통해 분석하는 방법을 제안하였다. 골재와 모르타르를 별도로 모델링하는 메소모델을 이용하여 모르타르에만 수축 변형을 가하는 방법으로 콘크리트의 수축 해석을 수행하였다. 해석 결과에 따르면 콘크리트의 수축에 의한 균열 발생은 골재의 강성과 부재의 구속도에 의해 크게 영향을 받는 것을 알 수 있었다. 또한, 수축에 의한 콘크리트의 균열발생은 단순한 하나의 값으로 나타내지 못하는 현상이며, 골재의 강성과 부재의 구속도는 그에 큰 영향을 주는 요소들이었다.

Shrinkage is one of typical characteristics of concrete with cement paste and aggregates. A lot of studies on this has been conducted with an assumption that the concrete is a homogeneous material. However, as shrinkage acts on only one of the components that consist of concrete, it is hard to be characterized only by the average effective properties. Therefore, in this paper, the concrete shrinkage, which is one of the typical characteristics and still has a lot of uncertainty, is simulated considering its heterogeneous properties. Using a meso model, concrete is modeled with the combination of mortar and aggregates, and the shrinkage is simulated by applying the shrinkage strain on the mortar only. According to the results, it is shown that the cracking of shrinking concrete is largely influenced by the types of aggregates and the degree of restraint. Also, the shrinkage cracking cannot be represented only by the single values such as tensile strength since the stiffness of aggregates and the degree of restraint influence the cracking.

키워드

참고문헌

  1. KCI (2007), Design specifications for concrete structure.
  2. Agioutantis, Z, Chatzopoulou, E, Stavroulaki, M. (2000), A numerical investigation of the effect of the interfacial zone in concrete mixtures under uniaxial compression: the case of the dilute limit. Cement and Concrete Research, 30, 715-723. https://doi.org/10.1016/S0008-8846(00)00240-4
  3. Bazant, Z.P., Planas, J. (1997), Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC, 640.
  4. Elices, M., Rocco, C., Rosello, C. (2007), Cohesive crack modelling of a simple concrete: Experimental and numerical results, Engineering Fracture Mechanics, 76(10), 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
  5. Garboczi, E.J., Cheok, G.S., Stone, W.C. (2006), Using LADAR to characterize the 3-D shape of aggregates: preliminary results. Cement and Concrete Research, 36, 1072-1075. https://doi.org/10.1016/j.cemconres.2006.03.017
  6. Hafner S, Eckardt S, Luther T, Konke C. (2006), Mesoscale modelling of concrete: geometry and numerics. Computers & Structures, 84, 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
  7. Hossain, A. B., and Weiss, W. J. (2004), Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens, Cement and Concrete Composites, 26(5), 531-540. https://doi.org/10.1016/S0958-9465(03)00069-6
  8. Kwan, A.K.H., Wang, Z.M., Chan, H.C. (1999), Mesoscopic study of concrete II: nonlinear finite element analysis, Computers & Structures, 70(5), 545-556. https://doi.org/10.1016/S0045-7949(98)00178-3
  9. Lee, K.M, Park, J.H. (2008), A numerical model for elastic modulus of concrete considering interfacial transition zone, Cement and Concrete Research, 38, 396-402. https://doi.org/10.1016/j.cemconres.2007.09.019
  10. Mindess, S., Young, J.F., Darwin, D. (2002), Concrete, Prentice Hall, 644.
  11. Mohamed, A.R., Hansen, W. (1999), Micromechanical modeling of crack-aggregate interaction in concrete materials, Cement and Concrete Composites, 21(5-6), 349-359. https://doi.org/10.1016/S0958-9465(99)00016-5
  12. Monteiro, P.J.M., Andrade, W.P. (1987), Analysis of the Rock-Cement Paste Bond Using Probabilistic Treatment of Brittle Strength, Cement and Concrete Research, 17, 919-926. https://doi.org/10.1016/0008-8846(87)90080-9
  13. Moon, J.H. (2006), Shrinkage, Residual Stress, and Cracking in Heterogeneous Materials, PhD Thesis, Purdue University, West Lafayette, Indiana, May 2006, 244.
  14. Moon, J.H., Rajabipour, F., Pease, B., Weiss, J. (2005), Autogenous Shrinkage, Residual Stress, and Cracking in Cementitious Composites: The Influence of Internal and External Restraint, Fourth International Seminar on Self-desiccation and Its Importance in Concrete Technology, Maryland, USA, 1-21
  15. Neville, A.M. (1996), Properties of Concrete, Wiley, New York, 844.
  16. Van Mier, J.G.M., Van Vliet, M.R.A. (2003), Influence of microstructure of concrete on size/scale effects in the tensile fracture. Engineering Fracture Mechanics, 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9