DOI QR코드

DOI QR Code

Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete

강섬유의 특성이 강섬유보강 콘크리트의 압축 및 휨 인성에 미치는 영향

  • 임동균 (충남대학교 건축공학과) ;
  • 장석준 (한국시설안전공단 시설성능연구소) ;
  • 정권영 (충남대학교 건축공학과) ;
  • 윤다애 (충남대학교 건축공학과) ;
  • 윤현도 (충남대학교 건축공학과)
  • Received : 2018.10.01
  • Accepted : 2019.03.22
  • Published : 2019.05.01

Abstract

Effects of tensile strength and aspect ratio of steel fiber on compressive and flexural behavior of steel fiber-reinforced concrete (SFRC) with high- and normal-strength were investigated. Also, this study explores compressive behavior of SFRC with different loading rate. For this purpose, four types of steel fiber were used for SFRC with specified compressive strength of 35 and 60 MPa, respectively. Cylindrical specimens with a diameter of 150 mm and height of 300 mm were made for compression test, and prismatic specimens with a $150{\times}150mm$ cross-section and 450 mm span length were made for flexural test. Test results from compression and flexural tests indicated that the toughness of concrete significant increased with steel fibers. Especially, using steel fiber with high tensile strength and aspect ratio can be lead to performance improvement of high-strength SFRC. In this study, equations are suggested to predict compressive toughness ratio of SFRC from flexural toughness ratio.

본 연구는 강섬유의 인장강도 및 형상비가 고강도 및 보통강도 강섬유보강 콘크리트(Steel fiber-reinforced concrete, SFRC)의 압축 및 휨 거동에 미치는 영향을 평가하기 위하여 실시되었다. 또한 본 연구에서는 가력속도에 따른 SFRC의 압축거동을 평가하였다. 이를 위해 총 4종류의 강섬유가 설계기준 압축강도 35 및 60 MPa급 SFRC에 각각 사용되었다. 압축거동 평가를 위해 지름 150 mm 및 높이 300 mm의 원주형 공시체를 사용하였으며, 단면 $150{\times}150mm$ 및 지간 450 mm의 각주형 공시체를 사용하여 휨 거동 평가를 실시하였다. 실험결과 강섬유의 혼입은 콘크리트의 인성을 크게 향상시키는 것으로 나타났으며, 고강도 강섬유의 사용은 고강도 SFRC의 성능개선에 효과적인 것으로 나타났다. 아울러 본 연구에서는 SFRC의 휨 인성지수에 근거한 압축인성지수 산정기법을 제안하였다.

Keywords

References

  1. ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute.
  2. Ahn, K. L., Jang, S. J., Jang, S. H., and Yun, H. D. (2015), Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete, Journal of the Korea Concrete Institute, 27(3), 228-235 (in Korea, with English abstract).
  3. Aoude, H., Cook, W. D., and Mitchell, D. (2009), Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete, ACI Structural Journal, 106(3), 349-357.
  4. Aoude, H., Belghiti, M., Cook, W. D., & Mitchell, D. (2012), Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups, ACI Structural Journal, 109(3), 359-367.
  5. ASTM C1609 (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), American Society for Testing and Materials.
  6. Banthia, N., and Trottier, J. F. (1995), Test Methods for Flexural Toughness Characterization of Fiber Reinforced Concrete: Some Concerns and a Proposition, ACI Materials Journal, 92, 48-57.
  7. Barros, J. A., and Figueiras, J. A. (1999), Flexural Behavior of SFRC: Testing and Modeling, Journal of materials in civil engineering, 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
  8. Bencardino, F., Rizzuti, L., Spadea, G., and Swamy, R. N. (2008), Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression, Journal of Materials in Civil Engineering, 20(3), 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
  9. Carneiro, J. A., Lima, P. R. L., Leite, M. B., and Toledo Filho, R. D. (2014), Compressive Stress-Strain Behavior of Steel Fiber Reinforced-Recycled Aggregate Concrete, Cement and concrete composites, 46, 65-72. https://doi.org/10.1016/j.cemconcomp.2013.11.006
  10. Chen, G. M., He, Y. H., Yang, H., Chen, J. F., and Guo, Y. C. (2014), Compressive Behavior of Steel Fiber Reinforced Recycled Aggregate Concrete After Exposure to Elevated Temperatures, Construction and Building Materials, 71, 1-15. https://doi.org/10.1016/j.conbuildmat.2014.08.012
  11. Germano, F., Tiberti, G., and Plizzari, G. (2016), Experimental Behavior of SFRC Columns Under Uniaxial and Biaxial Cyclic Loads, Composites Part B: Engineering, 85, 76-92. https://doi.org/10.1016/j.compositesb.2015.09.010
  12. Jang, S. J., Ahn, K. L., and Yun, H. D. (2015), Effects of Aggregate Size and Fiber Volume Fraction on Flextural Properties of Steel Fiber Reinforced Concrete (SFRC), Architectural Institute of Korea, 31(2), 45-54. (in Korea, with English abstract) https://doi.org/10.5659/JAIK_SC.2015.31.2.45
  13. Jang, S. J., Jeong, G. Y., and Yun, H. D. (2018). Use of Steel Fibers as Transverse Reinforcement in Diagonally Reinforced Coupling Beams with Normal-and High-Strength Concrete, Construction and Building Materials, 187, 1020-1030. https://doi.org/10.1016/j.conbuildmat.2018.08.063
  14. Jang, S. J., and Yun, H. D. (2018), Combined Effects of Steel Fiber and Coarse Aggregate Size on the Compressive and Flexural Toughness of High-Strength Concrete, Composite Structures, 185, 203-211. https://doi.org/10.1016/j.compstruct.2017.11.009
  15. Jeong, G. Y., Jang, S. J., Kim, Y. C., and Yun, H. D. (2018), Effects of Steel Fiber Strength and Aspect Ratio on Mechanical Properties of High-Strength Concrete, Journal of the Korea Concrete Institute, 30(2), 197-205 (in Korea, with English abstract). https://doi.org/10.4334/JKCI.2018.30.2.197
  16. Johnston, C. D., (1982), Definition and Measurement of Flexural Toughness Parameters for Fiber Reinforced Concret, Cement, Concrete and Aggregates, 4(2), 53-60. https://doi.org/10.1520/CCA10228J
  17. JSCE-SF5 (1984), Method of Tests for Compressive Strength and Compressive Toughness of Steel Fiber Reinforced Concrete, Japan Society of Civil Engineers.
  18. Koksal, F., Sahin, Y., and Sahin, M. (2012), Effect of Steel Fiber Tensile Strength on Mechanical Properties of Steel Fiber Reinforced Concretes, Special Publication, 289, 1-15.
  19. KS F 2403 (2014), Standard Test Method of Making and Curing Concrete Specimens, Korean Standards Association (in Korean).
  20. KS F 2405 (2010), Standard Test Method for Compressive Strength of Concrete, Korean Standards Association (in Korean).
  21. Lee, S. C., Oh, J. H., and Cho, J. Y. (2015), Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers, Materials, 8(4), 1442-1458. https://doi.org/10.3390/ma8041442
  22. Minelli, F., and Plizzari, G. A. (2013), On the Effectiveness of Steel Fibers as Shear Reinforcement, ACI Structural Journal, 110(3).
  23. Nataraja, M. C., Dhang, N., and Gupta, A. P. (1999), Stress-Strain Curves for Steel-Fiber reinforced Concrete under Compression, Cement and concrete composite, 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  24. Nataraja, M. C., Dhang, N., and Gupta, A. P. (2000), Toughness Characterization of Steel Fiber-Reinforced Concrete by JSCE Approach, Cement and Concrete Research, 30(4), 593-597. https://doi.org/10.1016/S0008-8846(00)00212-X
  25. Ou, Y. C., Tsai, M. S., Liu, K. Y., and Chang, K. C. (2011), Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, Journal of Materials in Civil Engineering, 24(2), 207-215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
  26. Sahoo, D. R., and Kumar, N. (2015), Monotonic Behavior of Large-Scale SFRC Beams without Stirrups, Engineering Structures, 92, 46-54. https://doi.org/10.1016/j.engstruct.2015.03.014
  27. Yazici, S., Inan, G., and Tabak, V. (2007), Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC, Construction and Building Materials, 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025