DOI QR코드

DOI QR Code

Prediction Equation for Chloride Diffusion in Concrete Containing GGBFS Based on 2-Year Cured Results

2년 양생 실험결과를 이용한 고로슬래그 미분말 콘크리트의 염화물 확산 예측식

  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 조성준 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2018.09.07
  • Accepted : 2018.11.12
  • Published : 2019.03.01

Abstract

GGBFS(Ground Granulated Blast Furnace Slag), one of the representative concrete mineral admixtures, improves the long-term durability and engineering performance of concrete by latent hydraulic activity. In this study, considering 3 levels of W/B(0.37, 0.42, 0.47) and GGBFS replacement ratio(0 %, 30 %, 50 %), durability performances for chloride attack are evaluated, and equations which predict behavior of accelerated chloride diffusion are proposed. Also, the relationship between accelerated chloride diffusion coefficient and passed charge is evaluated. In target curing day, accelerated chloride diffusion tests(Tang's method, ASTM C 1202) and compressive strength(KS F 2405) are performed. In the 730 day's results of accelerated chloride diffusion coefficient, GGBFS concrete has up to 28 % of decreasing ratio compared to OPC concrete, and in those of passed charge, GGBFS concrete has up to 29 % of decreasing ratio compared to OPC concrete. Also, it is deemed that the impact of variation of W/B is less in GGBFS concrete than in OPC concrete. The equations which predict accelerated chloride diffusion coefficient and passed charge are drawn, based on the characteristics of mixture and test results. The equation which predicts passed charge shows slightly higher coefficient of determination than that which predicts accelerated chloride diffusion coefficient.

대표적인 콘크리트 혼화재료 중 하나인 고로슬래그 미분말을 혼입한 콘크리트는 잠재수경성에 의해 콘크리트의 장기 내구성능 및 역학적 성능이 향상된다. 본 연구에서는 3 가지 수준의 물-결합재 비(0.37, 0.42, 0.47) 및 고로슬래그 미분말 혼입률(0 %, 30 %, 50 %)을 고려하여 염해에 대한 내구성능 평가를 수행하였으며, 염화물 확산 거동(촉진 염화물 확산계수, 통과 전하량)을 예측하는 식을 도출하고 촉진 염화물 확산계수와 통과 전하량간의 상관관계를 평가하였다. 2년 양생조건 시 고로슬래그 미분말 혼입 콘크리트에서 OPC 콘크리트 대비 촉진 염화물 확산계수 평가 결과에서는 최대 28 %의 감소율을 통과 전하량 평가에서는 최대 29 %의 감소율을 나타냈다. 또한 물-결합재 비의 증감에 의한 영향을 OPC 콘크리트 보다 GGBFS 미분말 혼입 콘크리트에서 더 적게 받는 것으로 판단된다. 배합 특성 및 실험 결과를 바탕으로 촉진 염화물 확산계수 및 통과 전하량을 예측하는 식을 다중회귀분석을 통해 도출한 결과, 통과 전하량 예측식이 확산계수 예측식보다 높은 결정계수를 나타냈다.

Keywords

References

  1. ASTM C 1202. (2005), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials.
  2. Al-Amoudi, O. S. B., Al-Kutti, W. A., Ahmad, S., and Maslehuddin, M. (2009), Correlation between Compressive Strength and Certain Durability Indices of Plain and Blended Cement Concretes, Cement and Concrete Composites, 31(9), 672-676. https://doi.org/10.1016/j.cemconcomp.2009.05.005
  3. Berke N. S., and Hicks, M. C. (1994), Predicting Chloride Profiles in Concrete, CORROSION, 50(3), 234-239. https://doi.org/10.5006/1.3293515
  4. Jeong, J. Y., Jang, S. Y., Choi, Y. C., Jung, S. H., and Kim, S. I. (2015), Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes, Journal of the Korea Concrete Institute, 27(2), 115-125. https://doi.org/10.4334/JKCI.2015.27.2.115
  5. KCI(Korea Concrete Institute). (1996), Latest Concrete Engineering, Kimoondang, Seoul, 453-459.
  6. KCI(Korea Concrete Institute). (2011), Concrete and Environment, Kimoondang, Seoul, 28-36.
  7. KS F 2405. (2015), Standard Test Method for Compressive Strength of Concrete, KSSN.
  8. Lee, J. W., Kim, K. M., Bae, Y. K., and Lee, J. S. (2004), Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer, In Korea Concrete Institute academic conference, Korea Concrete Institute, Pyoengchang, 200-203.
  9. Lee, S. H., and Kwon, S. J. (2012), Experimental Study on the Relationship between Time-Dependent Chloride Diffusion Coefficient and Compressive Strength, Journal of the Korea Concrete Institute, 24(6), 715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  10. Metha, P. K., and Monteiro, P. M. (2009), Concrete-Structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 1-7.
  11. Maekawa, K., Ishida, T., and Kishi, T. (2003), Multi-Scale Modeling of Concrete Performance, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  12. NT BUILD 492, (1999), Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments, NORDTEST.
  13. Oh, K. S., Moon, J. M., Park, K. T., and Kwon, S. J. (2016), Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 10-17. https://doi.org/10.11112/jksmi.2016.20.2.010
  14. Park, J. S., Yoon, Y. S., and Kwon, S. J. (2018), Relations Analysis between Strength and Time-parameter in High Performance Concrete Containing GGBFS Cured for 1 year, Journal of the Korea Concrete Institute, 30(4), (accepted).
  15. RILEM. (1994), Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  16. SERI. (2003), Evaluation of chloride ion diffusion characteristics of high durability concrete, Samsung Engineering Research Institute.
  17. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2005), A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete using Mineral Admixture, Journal of the Korean Society of Civil Engineers, 25(1A), 213-223.
  18. Song H. W., Pack, S. W., Lee, C. H., and Kwon, S. J. (2006), Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, Journal of Restoration of Building and Monument, 12(4), 265-284. https://doi.org/10.1515/rbm-2006-6064
  19. Tang, L., and Nilsson, L. O. (1992), Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electrical Field, ACI Materials journal, 89(1), 49-53.
  20. Thomas, M. D. A., and Bamforth, P. B. (1999), Modelling chloride diffusion in concrete: Effect of fly ash and slag, Cement and concrete research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  21. Yoon, Y. S., and Kwon, S. J. (2018), Evaluation of Time-Dependent Chloride Resistance in HPC containing Fly Ash Cured for 1 year, Journal of the Korea Institute for Structural Maintenance and Inspection, (accepted).

Cited by

  1. 폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구 vol.21, pp.1, 2019, https://doi.org/10.5345/jkibc.2021.21.1.001