DOI QR코드

DOI QR Code

The Vegetation Effect of under Neutralizing Layer Type on the Acid Drainage Slope

산성배수 비탈면의 중화층 종류에 따른 녹화효과

  • 조성록 (산수그린텍) ;
  • 김재환 (청주대학교 휴먼환경디자인학부 조경도시계획전공)
  • Received : 2019.01.14
  • Accepted : 2019.07.11
  • Published : 2019.08.01

Abstract

This study is composed of nine treatments [Control : "no neutralizing layer+vegetation layer" 3 cm, Treatment 1 : "no neutralizing layer+vegetation layer" 5 cm, Treatment 2 : "no neutralizing layer+vegetation layer" 7 cm, Treatment 3 :"neutralizing layer (cement 3 %)+ vegetation layer (cement 1 %)" 3 cm, Treatment 4 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 5 cm, Treatment 5 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 7 cm, Treatment 6 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$] +vegetation layer" 3 cm, Treatment 7 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 5 cm, Treatment 8 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 7 cm] to find out the vegetation effects according to neutralizing layer types of the acid drainage slope. There were no significant differences observed in soil hardness and soil moisture content of neutralizing layer type while highly difference of moisture content was observed according to the neutralizing and vegetation layer thickness. As for soil acidity, strong acid was shown in the control, treatment 1 and treatment 2. Neutralizing effects were outstanding in treatments of 3, 4, 5 (cement treatment group), 6, 7 and 8 (limestone treatment group). Concerning plants growth characteristics, surface coverage rates, number of germinating woody plants, plant height, and plant root status, there were excellent effects observed in the experimental groups mixed with cement (treatments 3, 4 and 5) and limestone (treatments 6, 7 and 8). At the initial stage, however, plant roots were negatively affected in cement layer treatments of 3, 4 and 5. However, no difference was shown in each layer thickness on the acid drainage slope whereas 3~5 cm thickness neutralizing layer was appropriate in consideration of economic feasibility.

산성배수 비탈면의 중화층 종류에 따른 녹화 효과를 알아보고자 9개의 실험구 [대조구: "무처리층+식생층 3 cm", 실험1구: "무처리층+식생층 5 cm", 실험2구: "무처리층+식생층 7 cm", 실험3구: "중화층(cement 3 %)+식생층(cement 1 %) 3 cm", 실험4구: "중화층(cement 3 %)+식생층(cement 1 %) 5 cm", 실험5구: "중화층(cement 3 %) + 식생층(cement 1 %) 7cm", 실험6구: "중화층[$(Ca{\cdot}Mg)CO_3$]+식생층 3 cm", 실험7구: "중화층[$(Ca{\cdot}Mg)CO_3$]+식생층 5 cm", 실험8구: "중화층[$(Ca{\cdot}Mg)CO_3$]+식생층 7 cm"]를 조성하였다. 중화층 종류에 따른 표면경도 및 함수율의 유의차이는 없었으나 두께에 따른 함수율의 차이는 있었다. 토양산도(pH)는 중화제를 처리하지 않은 실험구(대조구, 실험1구, 실험2구)에서 높게 나타났고, 시멘트를 배합한 실험구(실험3구, 실험4구, 실험5구)와 석회고토를 배합한 실험구(실험6구, 실험7구, 실험8구)에서 중화효과가 크게 나타났다. 식물생육 특성은 지면피복율, 목본류 발아개체수 및 수고, 식물 뿌리상태 등이 시멘트를 배합한 실험구 및 석회고토를 배합한 실험구에서 우수했으나 시멘트를 배합한 실험구는 초기 식물 뿌리생장에 좋지 못한 결과가 나타나 주의가 요구된다. 또한, 산성배수 비탈면의 중화층 두께에 따른 차이는 없었으며 경제성을 고려할 때 3~5 cm가 적정할 것으로 판단된다.

Keywords

References

  1. Anonymous (1965). "Proceedings of the association of official seed analysts." Journal of Seed Technology, Vol. 54, No. 2, pp. 1-112.
  2. Chung, D. Y. (2012). Soil and Life. Chungnam National University Communication & Press All Right Reserved. pp. 183-191.
  3. Jang, C. H. and Kim, M. S. (2006). "chemistry of strong acidic soil on Ulsan-Jungiadong cut-slope affecting seed germination." Journal of the Korean Env. Res. Tech., Vol. 9, No. 6, pp. 133-142.
  4. Jeong, Y. H., Lee, I. K, Lim, J. H, Seo, K. W. and Lee, C. H. (2010). "Comparison of seedling growth by treatments of vegetation basis in an abandoned coal mine area." Journal of the Korean Env. Res. Tech., Vol. 13, No. 6, pp. 87-96.
  5. Johnson, D. B. and Hallberg, K. B. (2005). "Acid mine drainage remediation options: a review." Science of the Total Environment, Vol. 338, pp. 3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  6. Kim, J. G. (2007). "Acid drainage and damage reduction strategy in construction site: An introduction." Journal of the Korea Society of Economic and Environmental Geology, Vol. 40, No. 5, pp. 651-660.
  7. Kim, J. G., Lee, J. S. and Kim, T. G. (2008). "Assessment of acid rock drainage production potential and damage reduction strategy : A case study of tunnel construction area." Journal of the Korea Society of Economic and Environmental Geology, Vol. 41, No. 3, pp. 335-344.
  8. Kim, J. H. and Shim, S. R. (2009). "A vegetation characteristics of a cut-slope affected by seeding periods of the winter season." Journal of the Korean Env. Res. Tech., Vol. 12, No. 2, pp. 29-39.
  9. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2017). Technology development for damage reduction and ecosystem restoration in acid drainage producing construction site. pp. 5-83.
  10. Korea Meteorological Administration (KMA) (2009). Available at: http://www.kma.go.kr (Accessed: October 18, 2018)
  11. Lee, J. S., Kim, J. G., Park, J. S., Chon, C. M. and Nam, I. H. (2013). "Assessment and damage reduction strategy of acid rock drainage in highway construction site: OO highway construction site." Journal of the Korea Society of Economic and Environmental Geology, Vol. 46, No. 5, pp. 411-424. https://doi.org/10.9719/EEG.2013.46.5.411
  12. Lunt, I. D. (2003). "A protocol for integrated management, monitoring, and enhancement of degraded Themeda triandra grasslands based on planting of indicator species." Restoration Ecology, Vol. 11, pp. 223-230. https://doi.org/10.1046/j.1526-100X.2003.00201.x
  13. Matlock, M. M., Howerton, B. S. and Atwood, D. A. (2003). "Covalent coating of coal refuse to inhibit leaching." Advances in Environmental Research, Vol. 7, pp. 495-501. https://doi.org/10.1016/S1093-0191(02)00019-9
  14. Ministry of Land, Transport and Maritime Affairs (MLTM) (2009). "Design and construction guidelines for road slope reconstruction work." pp. 34-80.
  15. Park, M. S. (2002). "Dominant species and factors related with plant coverage in the cutting slopes of forest road." Journal of the Korean Env. Res. Tech., Vol. 5, No. 1, pp. 19-27.
  16. SAS Institute Inc. (2013). The SAS system for window Release 9.1.
  17. Smith, R. A. H. and Bradshaw A. D. (1979). "The use of metal tolerant plant populations for the reclamation of metalliferous wastes." Journal of Applied Ecology, Vol. 16, pp. 595-612. https://doi.org/10.2307/2402534
  18. Ulrich, B., Mayer, R. and Khnaan, P. K. (1980). "Chemical changes due to acid precipitation in a loss-derived soil in Central Europe." Journal Soil Science, pp. 193-199.
  19. Wilkins, D. A. (1978). "The measurement of tolerance to edaphic factors by means of root growth." New Phytol., Vol. 80, pp. 623-633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.x