References
- Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. (pp.661). Future Generation Computer Systems, 78, 659-676. https://doi.org/10.1016/j.future.2017.04.036
- AbuKhousa, E., Mohamed, N., & Al-Jaroodi, J. (2012). e-Health cloud: opportunities and challenges. (pp.623). Future internet, 4(3), 621-645. https://doi.org/10.3390/fi4030621
- Samani, A., Ghenniwa, H. H., & Wahaishi, A. (2015). Privacy in Internet of Things: A model and protection framework. (pp.606). Procedia Computer Science, 52, 606-613. https://doi.org/10.1016/j.procs.2015.05.046
- Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access, 5, 3302-3312. https://doi.org/10.1109/ACCESS.2017.2677520
- Dwork, C. (2011). Differential privacy. Encyclopedia of Cryptography and Security, 338-340.
- Kim, J. W., Lim, J. H., Moon, S. M., Yoo, H., & Jang, B. (2019, January). Privacy-Preserving Data Collection Scheme on Smartwatch Platform. In 2019 IEEE International Conference on Consumer Electronics (ICCE) pp. 2. IEEE.
- Wang, T., Blocki, J., Li, N., & Jha, S. (2017). Locally differentially private protocols for frequency estimation. pp. 729. In 26th {USENIX} Security Symposium ({USENIX} Security 17) (pp. 729-745).
- Du, W., & Zhan, Z. (2003, August). Using randomized response techniques for privacy-preserving data mining. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 505-510). ACM.
- Kim, J. W., Kim, D. H., & Jang, B. (2018). Application of local differential privacy to collection of indoor positioning data. pp. 1. IEEE Access, 6, 4276-4286. https://doi.org/10.1109/ACCESS.2018.2791588
- Erlingsson, U., Pihur, V., & Korolova, A. (2014, November). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security (pp. 1054-1067). ACM.
- Du, W., & Zhan, Z. (2003, August). Using randomized response techniques for privacy-preserving data mining. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 505-510). ACM.
- Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. In Big data and internet of things: A roadmap for smart environments (pp. 169-186). Springer, Cham.
- Stojmenovic, I., & Wen, S. (2014, September). The fog computing paradigm: Scenarios and security issues. In 2014 Federated Conference on Computer Science and Information Systems (pp. 1-8). IEEE.
- Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16). ACM.
- Masip-Bruin, X., Marin-Tordera, E., Alonso, A., & Garcia, J. (2016, June). Fog-to-cloud computing (F2C): The key technology enabler for dependable e-health services deployment. In 2016 Mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1-5). IEEE.
Cited by
- Privacy-Preserving Method to Collect Health Data from Smartband vol.25, pp.4, 2020, https://doi.org/10.9708/jksci.2020.25.04.113
- Privacy-Preserving Traffic Volume Estimation by Leveraging Local Differential Privacy vol.26, pp.12, 2019, https://doi.org/10.9708/jksci.2021.26.12.019