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SOME REMARKS ON BOUNDED COHOMOLOGY

GROUP OF PRODUCT OF GROUPS

HeeSook Park

Abstract. In this paper, for discrete groups G and K, we show
that the bounded cohomology group of G×K is isomorphic to the
cohomology group of the complex of the projective tensor prod-
uct B∗(G)⊗̂B∗(K), where B∗(G) and B∗(K) are the complexes of
bounded cochains with real coefficients R of G and K, respectively.

1. Introduction

Throughout this paper, G and K denote discrete groups. Also, we
consider Banach spaces over the field of real numbers R.

Bounded cohomology of G with real coefficients, denoted by Ĥ∗(G),
is cohomology of the bounded cochain complex B∗(G), which are Ba-

nach spaces. Then we can define bounded cohomology Ĥ∗(G × K) of
the product of groups G×K as the cohomology of the bounded cochain
complex B∗(G×K). In [4], under some conditions required for a cat-
egory of Banach spaces, it is shown that there is a spectral sequence
with

Ep,q2 =
⊕
s+t=q

Torp
(
Ĥs(G), Ĥt(K)

)
and it converges to Hn

(
B∗(G)⊗̂B∗(K)

)
. So, it seems natural to con-

sider the relationship between cochian complexes B∗(G)⊗̂B∗(K) and

B∗(G×K), and compare Hn
(
B∗(G)⊗̂B∗(K)

)
with Ĥn(G×K).

As we deal with bounded cohomology of a group, we first briefly
review its definition developed by Ivanov. In [2], he defined it by using
the method of relative homological algebra, which we will modify, and
cultivated the theory of bounded cohomology.
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Definition 1.1. Let V be a Banach space equipped with a norm ‖·‖.
We say V is a bounded left G-module if there is a left action of G on V
such that ‖g · v‖ ≤ ‖v‖ for all g ∈ G and v ∈ V .

Similarly, we can define a bounded right G-module. For simplicity, a
bounded left G-module will be called a G-module.

Notice that R is considered as a G-module with the trivial G-action.
Let M be a Banach space equipped with a norm ‖ · ‖M and B(G,M)

be the set of all bounded functions on G, that is,

B(G,M) = {f : G→M | ‖f‖ = sup
a∈G
‖f(a)‖M <∞}.

Then B(G,M) is a Banach space with the norm ‖ · ‖. Similarly, for
every n ≥ 1, let Gn be the n-product of G so that Gn = G× · · · ×G︸ ︷︷ ︸

n

.

We denote by Bn(G,M) the set of all bounded functions on Gn, that is,

Bn(G,M) = {f : Gn →M | ‖f‖ <∞},
where ‖f‖ = sup{‖f(a1, · · · , an)‖M | (a1, · · · , an) ∈ Gn}.

In case that M = R, we denote Bn(G,R) by Bn(G).

Remark 1.2. (1): For a Banach space M , every Bn(G,M) for
n > 0 is a G-module with the action defined by

(x · f) (g1, g2, · · · , gn−1, gn) = f (g1, g2, · · · , gn−1, gnx) for x ∈ G.
(2): Bn+1(G) is isomorphic with B (G,Bn(G)), where Bn(G) is con-

sidered simply as a Banach space.

Definition 1.3. Let W1 and W2 be G-modules. A bounded linear
operator λ : W1 → W2 is called a G-morphism if λ commutes with the
action of G. Furthermore, we say an injective G-morphism λ : W1 →W2

is strongly injective if there is a bounded linear operator σ : W2 → W1

such that σ ◦ λ = id and ‖σ‖ ≤ 1.

Definition 1.4. Let X be a G-module. We say X is relatively in-
jective if for any strongly injective G-morphism λ : W1 → W2 of G-
modules and any given G-morphism Φ : W1 → X, there is a G-morphism
Γ : W2 → X such that Γ ◦ λ = Φ and ‖Γ‖ ≤ ‖Φ‖.

Notice that Definition 1.4 is illustrated by the following commutative
diagram

(1.4.1)

W1 W2 σ ◦ λ = id

X

λ

Φ

σ

Γ
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Proposition 1.5. For any group G and a Banach space M , the G-
module B(G,M) is relatively injective. In particular, every G-module
Bn(G) for n > 0 is relatively injective.

Proof. This is Lemma (3.2.2) in [2]. We review the idea for our own
use and refer to [2] in detail.

We consider the following diagram in (1.4.1) by settingX = B(G,M):

W1 W2

B(G,M)

λ

Φ

σ

Γ

where λ is a strongly injective G-morphism and σ is a bounded linear
operator satisfying σ ◦ λ = id and ‖σ‖ ≤ 1. For w ∈ W2 and x ∈ G, we
define

Γ(w)(x) = Φ (σ(x · w)) (eG),

where eG is the identity of G.
Then, by a standard calculation, we can show Γ is a G-morphism such

that Γ ◦ λ = Φ and ‖Γ‖ ≤ ‖Φ‖. Hence B(G,M) is a relatively injective
G-module. Then, since B(G) = B(G,R), a G-module B(G) is rela-
tively injective. For n ≥ 1, as Bn+1(G) is isomorphic to B (G,Bn(G))
from Remark 1.2, a G-module Bn(G) for every n > 0 is also relatively
injective.

Definition 1.6. For a G-module V , a G-resolution of V is a sequence
of G-modules and G-morphisms of the form

(1.6.1) 0→ V
d−1−−→ V0

d0−→ V1
d1−→ V2

d2−→ · · ·
such that it is exact as a sequence of vector spaces over R. We say this
G-resolution (1.6.1) of V is strong if it is provided with a contracting
homotopy t0 : V0 → V and tn : Vn → Vn−1 for n > 0 satisfying the
condition ‖tn‖ ≤ 1 for all n ≥ 0, that is, a sequence {tn} of linear
operators

V
t0←− V0

t1←− V1
t2←− V2

t3←− · · ·
such that dn−1 ◦ tn + tn+1 ◦ dn = id for n ≥ 0 and t0 ◦ d−1 = id.

Also, we say this G-resolution (1.6.1) of V is relatively injective if
every Vn is a relatively injective G-module.

Remark 1.7. For G-modules U and V , let

0→ U
∂−1−−→ U0

∂0−→ U1
∂1−→ · · ·
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be a strong resolution of U , and

0→ V
∂′−1−−→ V0

∂′0−→ V1
∂′1−→ · · ·

be a complex of relatively injective G-modules. Then, as in the ordinary
case of the Comparison Theorem [3], it is easy to check that any G-
morphism ρ : U → V can be extended to a G-morphism of complexes,
that is, there are G-morphisms γn : Un → Vn for n ≥ 0 such that
γn+1 ◦∂n = ∂′n ◦γn and γ0 ◦∂−1 = ∂′−1 ◦ρ. Also, any two such extensions
are chain homotopic.

Theorem 1.8. The sequence of G-modules

(1.8.1) 0→ R d−1−−→ B(G)
d0−→ B2(G)

d1−→ B3(G)
d2−→ · · ·

is a strong and relatively injective G-resolution of the trivial G-module
R, where boundary operators d∗ are defined by the formulas: for n ≥ 0

dn(f)(g0, g1, . . . , gn+1)

= (−1)n+1f(g1, . . . , gn+1) +

n∑
i=0

(−1)n−if(g0, . . . , gigi+1, . . . , gn+1)

(1.8.2)

and d−1(r)(g) = r for r ∈ R and every g ∈ G.

Proof. It follows from (3.4) in [2]. In fact, the operators

t0 : B(G)→ R and tn : Bn+1(G)→ Bn(G) for n > 0

defined by the formulas

t0(f) = f(eG) and tn(f)(g1, · · · , gn) = f(g1, · · · , gn, eG)

provide a contracting homotopy for the sequence (1.8.1).

Definition 1.9. The strong and relatively injective G-resolution of
the trivial G-module R in (1.8.1) is called the standard G-resolution.

Let V be a G-module. The space of all elements of V invariant under
the action of G is denoted by V G. Thus

V G = {v ∈ V | g · v = v for all g ∈ G}.
Observe that, as V G is a closed subspace of a Banach space V , it is also
a Banach space.

Let 0→ R d−1−−→ V0
d0−→ V1

d1−→ V2
d2−→ · · · be a G-resolution of R. It is

easy to check that its induced sequence

0→ V G
0

d0−→ V G
1

d1−→ V G
2

d2−→ · · ·



Some remarks on bounded cohomology group of product of groups 635

obtained by taking the spaces of G-invariant elements is a complex.

Definition 1.10. Let 0 → R d−1−−→ V0
d0−→ V1

d1−→ V2
d2−→ · · · be a

strong and relatively injective G-resolution of the trivial G-module R.
The nth cohomology of its induced complex

(1.10.1) 0→ V G
0

d0−→ V G
1

d1−→ V G
2

d2−→ · · ·

is called the n-th bounded cohomology of G. We denote it by Ĥn(G).

Proposition 1.11. The bounded cohomology groups Ĥ∗(G) of G
depend only on G.

Proof. Let

0→ R→ V0 → V1 → V2 → · · · and 0→ R→ U0 → U1 → U2 → · · ·

be two strong and relatively injective G-resolutions of R. From Remark
1.7, there are G- morphisms λn : Vn → Un and γn : Un → Vn extending
the identity map on R. Notice that both λ∗ ◦ γ∗ and γ∗ ◦ λ∗ are chain
homotopic to the identities. Then, as explained in [2], the morphisms
λ∗ and γ∗ respectively induce maps of complexes λGn : V G

n → UGn and
γGn : UGn → V G

n . Notice that the homotopy between λ∗◦γ∗ and id defines
a homotopy between λG∗ ◦γG∗ and id. Similarly, γG∗ ◦λG∗ is chain homotopic
to the identity. This shows that λG∗ is an isomorphism. Finally, as any
two extensions V∗ → U∗ are chain homotopic, this isomorphism λG∗ is
uniquely determined. Hence, the cohomology groups of the complexes

0→ V G
0 → V G

1 → V G
2 → · · · and 0→ UG0 → UG1 → UG2 → · · ·

are canonically isomorphic.

Notice that the group Ĥn(G) has a vector space structure over R. On

the other hand, as Ĥn(G) is a quotient space of a normed space, it has
the natural seminorm induced by the norm on G-module in the resolu-

tion used for its computation. Thus the seminorm on Ĥ∗(G) depends
on the choice of a resolution.

Definition 1.12. The canonical seminorm on Ĥn(G) is defined as
the infimum of seminorms arising from all strong and relatively injective
G-resolutions of R.

Again, in [2], it is proved that the canonical seminorm on Ĥn(G) can
be achieved by the standard G-resolution. So it seems reasonable to use

the standard G-resolution to compute Ĥ∗(G).
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Notice that, for f ∈ Bn(G) and n ≥ 1

f ∈ (Bn(G))
G

⇔ x · f = f for x ∈ G
⇔ (x · f)(g1, · · · , gn) = f(g1, · · · , gn) for x ∈ G and (g1, · · · , gn) ∈ Gn

⇔ f(g1, · · · , gn−1, gnx)=f(g1, · · · , gn−1, gn) for x ∈ G and (g1, · · · , gn) ∈ Gn.

Thus f ∈ Bn(G) is an element of (Bn(G))G if and only if f is not
affected by the last component of Gn.

Remark 1.13. (1): For every n > 0,
(
Bn+1(G)

)G
and Bn(G)

are isomorphic as Banach spaces. In particular, (B(G))G is iso-
morphic to R.

(2): The standard G-resolution (1.8.1) induces a complex

0→ B(G)G
d0=0−−−→

(
B2(G)

)G d1−→
(
B3(G)

)G d2−→
(
B4(G)

)G d3−→ · · ·

and this can be written as

(1.13.1) 0→ R d0=0−−−→ B(G)
d1−→ B2(G)

d2−→ B3(G)
d3−→ · · · .

The boundary operator d∗ in the complex (1.13.1) can be redefined
by

dn(f)(g1, g2, . . . , gn+1) = f(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ f(g1, . . . , gn).

The sequence (1.13.1) is a complex of Banach spaces and its coho-

mology is Ĥ∗(G) equipped with the canonical seminorm.

In Section 2, we study tensor products of Banach spaces and form a
G × K-resolution from the standard G- and K-resolutions. In Section
3, by using the method of relative homological algebra as in [2], we

prove the cohomology groups Ĥ∗(G × K) and H∗(B∗(G)⊗̂B∗(K)) are
isomorphic.

2. The tensor product of resolutions

We review a tensor product of Banach spaces.
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For Banach spaces X with a norm ‖·‖X and Y with a norm ‖·‖Y , we
consider their algebraic tensor product X⊗Y and define the projective
tensor norm ‖ · ‖π on X ⊗ Y as follows: for ω ∈ X ⊗ Y ,

‖ω‖π = inf

{
n∑
i=1

‖xi‖X‖yi‖Y , where ω =
n∑
i=1

xi ⊗ yi

}
,

where the infimum is taken over all representations of ω ∈ X ⊗ Y .
Unless the spaces X and Y are finite dimensional, X ⊗ Y endowed

with projective tensor norm is not complete and so not a Banach space.

Definition 2.1. The projective tensor product of Banach spaces X
and Y is defined as the completion ofX⊗Y with respect to the projective
tensor norm ‖ · ‖π. It is denoted by X⊗̂Y .

Proposition 2.2. Let X and Y be Banach spaces with norms ‖ · ‖X
and ‖ · ‖Y , respectively. Then ‖x ⊗ y‖π = ‖x‖X‖y‖Y for every x ∈ X
and y ∈ Y .

Proof. This is Proposition 2.1. in [6].

In [6], it is shown that ω ∈ X⊗̂Y if and only if, for every ε > 0, there
exist xk ∈ X and yk ∈ Y such that

ω =

∞∑
k=1

xk ⊗ yk and ‖ω‖π ≤
∞∑
k=1

‖xk‖X‖yk‖Y ≤ ‖ω‖π + ε

and also
∑∞

k=1 ‖xk‖X‖yk‖Y <∞. Thus

‖ω‖π=inf

{ ∞∑
k=1

‖xk‖X‖yk‖Y |
∞∑
k=1

‖xk‖X‖yk‖Y <∞, ω =
∞∑
k=1

xk ⊗ yk

}
,

where the infimum is taken over all representations of ω ∈ X⊗̂Y . For
more properties of projective tensor products, we refer to [6].

Remark 2.3. In the category of Banach spaces and bounded lin-
ear morphisms, there exists finite (co)product. However, infinite
(co)products do not exist as explained in [1].

Remark 2.4. From Remark 1.13, there is a complex of Banach
spaces

(2.4.1) 0→ R ∂0=0−−−→ B(G)
∂1−→ B2(G)

∂2−→ B3(G)
∂3−→ · · · .

Similarly, for K, there is a complex of Banach spaces

(2.4.2) 0→ R δ0=0−−−→ B(K)
δ1−→ B2(K)

δ2−→ B3(K)
δ3−→ · · · .
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As in the ordinary case, for n ≥ 1 we let(
B∗(G)⊗̂B∗(K)

)
n

=
⊕
p+q=n

Bp(G)⊗̂Bq(K).

From Remark 2.3, every
(
B∗(G)⊗̂B∗(K)

)
n

for n ≥ 1 is a Banach space.
Then we have a complex of Banach spaces

(2.4.3) 0 R
(
B∗(G)⊗̂B∗(K)

)
1

(
B∗(G)⊗̂B∗(K)

)
2

· · · ,
d′0=0 d′1 d′2

where the boundary operators d′n are defined on the monomial tensor
α⊗ β ∈ Bp(G)⊗̂Bq(K) by the formula

d′n(α⊗ β) = ∂pα⊗ β + (−1)pα⊗ δqβ.

As we know it, the nth cohomology group of the complex (2.4.3) is
denoted by Hn

(
B∗(G)⊗̂B∗(K)

)
.

Let U and V be Banach spaces. Recall that we have a G-
module B(G,U) and a K-module B(K,V ). We consider their projec-
tive tensor product B(G,U)⊗̂B(K,V ). A monomial tensor α ⊗ β ∈
B(G,U)⊗̂B(K,V ) can be considered as a function

α⊗ β : G×K → U ⊗ V

defined by (α⊗β)(x, y) = α(x)⊗β(y). Notice that G×K acts diagonally
on each monomial tensor α⊗ β ∈ B(G,U)⊗̂B(K,V ) by

(x, y) · (α⊗ β) = (x · α)⊗ (y · β).

Proposition 2.5. Let U and V be Banach spaces. Then the projec-
tive tensor product B(G,U)⊗̂B(K,V ) is a G×K-module with respect
to the diagonal action. Furthermore, Bp(G)⊗̂Bq(K) is a G×K-module
for positive integers p and q.

Proof. Recall that B(G,U)⊗̂B(K,V ) is a Banach space.

Let (x, y) ∈ G×K and ω ∈ B(G,U)⊗̂B(K,V ) be represented by

ω =

∞∑
k=1

αk ⊗ βk, where αk ∈ B(G,U) and βk ∈ B(K,V ) for each k.

By extending linearly the diagonal G × K action on each monomial
tensor, it is clear that G×K acts on B(G,U)⊗̂B(K,V ) by

(2.5.1) (x, y) · ω = (x, y) ·

( ∞∑
k=1

αi ⊗ βi

)
=

∞∑
k=1

(x · αk)⊗ (y · βk).
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Notice that

‖(x, y)·ω‖π ≤ ‖
∞∑
k=1

(x·αk)⊗(y·βk)‖ ≤
∞∑
k=1

‖x·αk‖‖y·βk‖ ≤
∞∑
k=1

‖αk‖‖βk‖.

Since the projective tensor norm of ω is defined as the infimum arising
from all norms of its representations, we have ‖(x, y) · ω‖π ≤ ‖ω‖π.
Thus this diagonal action is bounded. Hence B(G,U)⊗̂B(K,V ) is a
(G×K)-module.

The second statement follows from that Bp(G)⊗̂Bq(K) is isomorphic
to

B
(
G,Bp−1(G)

)
⊗̂B

(
K,Bq−1(K)

)
.

Now we consider the space of G × K-invariant elements in
Bp(G)⊗̂Bq(K).

Remark 2.6. From a diagonal action of G × K on Bp(G)⊗̂Bq(K)
defined in (2.5.1), observe that G acts only on Bp(G) and K only on
Bq(K). Hence it is easy to see that(

Bp(G)⊗̂Bq(K)
)G×K

= Bp(G)G⊗̂Bq(K)K = Bp−1(G)⊗̂Bq−1(K).

Now we construct a strong resolution from the tensor product of two
strong resolutions.

Theorem 2.7. For a G-module A and a K-module B, let

0 A X0 X1 X2 X3 X4 · · ·
∂−1

s0

∂0

s1

∂1

s2

∂2

s3

∂3

s4

∂4

s5

and

0 B Y0 Y1 Y2 Y3 Y4 · · ·
δ−1

t0

δ0

t1

δ1

t2

δ2

t3

δ3

t4

δ4

t5

be the strong G- and K-resolutions of A and B, respectively, satisfying
the conditions ‖∂−1 ◦ s0‖ ≤ 1 and ‖δ−1 ◦ t0‖ ≤ 1. For n ≥ 0, let(

X⊗̂Y
)
n

=
⊕
p+q=n

Xp⊗̂Yq.

Then the sequence

(2.7.1) 0→ A⊗̂B d−1−−→
(
X⊗̂Y

)
0

d0−→
(
X⊗̂Y

)
1

d1−→
(
X⊗̂Y

)
2

d2−→ · · ·
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is a strong G × K-resolution of the G × K-module A⊗̂B, where the
boundary operators d∗ are defined as follows: d−1 = ∂−1 ⊗ δ−1 and for
n ≥ 0

dn =
∑
p+q=n

∂p ⊗ idYq + (−1)pidXp ⊗ δq.

Proof. It is easy to see that A⊗̂B and
(
X⊗̂Y

)
n

are G×K-modules
with a diagonal action. It is clear that the sequence (2.7.1) is a complex
of G ×K-modules. So it is enough to construct the contracting homo-
topy, that is, a sequence of linear operators k0 : X0⊗̂Y0 → A⊗̂B and for
each n ≥ 0

kn+1 :
(
X⊗̂Y

)
n+1
→
(
X⊗̂Y

)
n

such that

k0 ◦ d−1 = id, dn−1 ◦ kn + kn+1 ◦ dn = id and ‖kn‖ ≤ 1.

Consider the sequence of Banach spaces

0 A⊗̂B
(
X⊗̂Y

)
0

(
X⊗̂Y

)
1

(
X⊗̂Y

)
2

· · · .
d−1

k0

d0

k1

d1

k2

d2

k3

We define the operator k0 as k0 = s0 ⊗ t0. It is clear that k0 is linear
and ‖k0‖ ≤ ‖s0‖‖t0‖ ≤ 1. Also, for n = p+ q ≥ 1 and xp⊗ yq ∈ Xp⊗̂Yq,
we define the operator kn as follows:

kn (xn ⊗ y0)=
1

2
(sn(xn)⊗ y0+sn(xn)⊗ δ−1t0(y0)) for p=n and q=0

kn (x0 ⊗ yn)=
1

2
(x0 ⊗ tn(yn)+∂−1s0(x0)⊗ tn(yn)) for p=0 and q=n

kn (xp ⊗ yq) =
1

2
(sp(xp)⊗ yq + (−1)pxp ⊗ tq(yq)) for p, q ≥ 1 .

It is clear that every kn is linear. We show ‖kn‖ ≤ 1. It is enough to see
that ‖kn(xp ⊗ yq)‖π ≤ ‖xp ⊗ yq‖π for each monomial tensor xp ⊗ yq ∈
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Xp⊗̂Yq. Notice that

‖kn (xn ⊗ y0) ‖π

=
1

2
‖sn(xn)⊗ y0 + sn(xn)⊗ δ−1t0(y0)‖π

≤ 1

2
‖sn(xn)⊗ y0‖π +

1

2
‖sn(xn)⊗ δ−1t0(y0)‖π

=
1

2
‖sn(xn)‖‖y0‖+

1

2
‖sn(xn)‖‖δ−1t0(y0)‖ by Proposition 2.2

≤ 1

2
‖xn‖‖y0‖+

1

2
‖xn‖‖δ−1t0‖‖y0‖

≤ 1

2
‖xn‖‖y0‖+

1

2
‖xn‖‖y0‖ ‖δ−1t0‖ ≤ 1

=
1

2
‖xn ⊗ y0‖π +

1

2
‖xn ⊗ y0‖π by Proposition 2.2

= ‖xn ⊗ y0‖π

Similarly, we can show ‖kn (x0 ⊗ yn) ‖π ≤ ‖x0 ⊗ yn‖π. Also,

‖kn (xp ⊗ yq) ‖π =
1

2
‖sp(xp)⊗ yq + (−1)pxp ⊗ tq(yq)‖π

≤ 1

2
‖sp(xp)⊗ yq‖π +

1

2
‖xp ⊗ tq(yq)‖π

=
1

2
‖sp(xp)‖‖yq‖+

1

2
‖xp‖‖tq(yq)‖

≤ 1

2
‖xp‖‖yq‖+

1

2
‖xp‖‖yq‖ = ‖xp‖‖yq‖

= ‖xp ⊗ yq‖π.

Hence kn is a linear operator such that ‖kn‖ ≤ 1 for each n ≥ 0.

It remains to show that k∗ is a contracting homotopy. By linearity,
we only check it for a monomial tensor. First, we show k0 ◦ d−1 = id.
For a⊗ b ∈ A⊗̂B, we have

(k0 ◦ d−1)(a⊗ b) = (s0 ⊗ t0) ◦ (∂−1 ⊗ δ−1) (a⊗ b)
= (s0 ◦ ∂−1)⊗ (t0 ◦ δ−1) (a⊗ b)
= (s0 ◦ ∂−1) (a)⊗ (t0 ◦ δ−1) (b) = a⊗ b.

Thus k0 ◦ d−1 = id.
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To show d−1 ◦ k0 + k1 ◦ d0 = idX0⊗̂Y0 , let x0 ⊗ y0 ∈ X0⊗̂Y0. Then

(d−1 ◦ k0) (x0 ⊗ y0) = d−1 (s0 ⊗ t0) (x0 ⊗ y0)

= (∂−1 ⊗ δ−1) (s0x0 ⊗ t0y0)

= (∂−1 ◦ s0) (x0)⊗ (δ−1 ◦ t0) (y0)

and

(k1 ◦ d0) (x0 ⊗ y0) = k1 (d0(x0 ⊗ y0))

= k1 (∂0x0 ⊗ y0 + x0 ⊗ δ0y0)

= k1 (∂0x0 ⊗ y0) + k1 (x0 ⊗ δ0y0)

=
1

2
[(s1 ◦ ∂0)x0 ⊗ y0 + (s1 ◦ ∂0)x0 ⊗ (δ−1 ◦ t0)y0]

+
1

2
[x0 ⊗ (t1 ◦ δ0)y0 + (∂−1 ◦ s0)x0 ⊗ (t1 ◦ δ0)y0] .

Since s1 ◦ ∂0 + ∂−1 ◦ s0 = id and δ−1 ◦ t0 + t1 ◦ δ0 = id, we have

(d−1 ◦ k0 + k1 ◦ d0) (x0 ⊗ y0)

= (d−1 ◦ k0) (x0 ⊗ y0) + k1 (d0(x0 ⊗ y0))

= (∂−1 ◦ s0)x0 ⊗ (δ−1 ◦ t0) y0

+
1

2
[(s1 ◦ ∂0)x0 ⊗ y0 + (s1 ◦ ∂0)x0 ⊗ (δ−1 ◦ t0)y0]

+
1

2
[x0 ⊗ (t1 ◦ δ0)y0 + (∂−1 ◦ s0)x0 ⊗ (t1 ◦ δ0)y0]

=
1

2
[(∂−1 ◦ s0)x0 ⊗ (δ−1 ◦ t0) y0 + (∂−1 ◦ s0)x0 ⊗ (t1 ◦ δ0)y0]

+
1

2
[(∂−1 ◦ s0)x0 ⊗ (δ−1 ◦ t0) y0 + (s1 ◦ ∂0)x0 ⊗ (δ−1 ◦ t0)y0]

+
1

2
[(s1 ◦ ∂0)x0 ⊗ y0 + x0 ⊗ (t1 ◦ δ0)y0]

=
1

2
[(∂−1 ◦ s0)x0 ⊗ y0 + x0 ⊗ (δ−1 ◦ t0) y0]

+
1

2
[(s1 ◦ ∂0)x0 ⊗ y0 + x0 ⊗ (t1 ◦ δ0)y0]

= x0 ⊗ y0.

This shows d−1 ◦ k0 + k1 ◦ d0 = id.
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Now, let n ≥ 1. For xn ⊗ y0 ∈ Xn⊗̂Y0, we have

(dn−1 ◦ kn) (xn ⊗ y0) =
1

2
dn−1 [snxn ⊗ y0 + snxn ⊗ (δ−1 ◦ t0)y0]

=
1

2

[
(∂n−1 ◦ sn)xn ⊗ y0 + (−1)n−1snxn ⊗ δ0y0

]
+

1

2

[
(∂n−1 ◦ sn)xn ⊗ (δ−1 ◦ t0)y0

+ (−1)n−1snxn ⊗ (δ0 ◦ δ−1 ◦ t0)y0

]

=
1

2

[
(∂n−1 ◦ sn)xn ⊗ y0 + (−1)n−1snxn ⊗ δ0y0

+ (∂n−1 ◦ sn)xn ⊗ (δ−1 ◦ t0)y0

]
and also

(kn+1 ◦ dn) (xn ⊗ y0) = kn+1 (∂nxn ⊗ y0 + (−1)nxn ⊗ δ0y0)

=
1

2
[(sn+1 ◦ ∂n)xn ⊗ y0 + (sn+1 ◦ ∂n)xn ⊗ (δ−1 ◦ t0)y0]

+ (−1)n
1

2
[snxn ⊗ δ0y0 + (−1)nxn ⊗ (t1 ◦ δ0)y0] .

Then

(dn−1 ◦ kn + kn+1 ◦ dn) (xn ⊗ y0)

=
1

2

[
(∂n−1 ◦ sn)xn ⊗ y0 + (−1)n−1snxn ⊗ δ0y0

+ (∂n−1 ◦ sn)xn ⊗ (δ−1 ◦ t0)y0

]

+
1

2
[(sn+1 ◦ ∂n)xn ⊗ y0 + (sn+1 ◦ ∂n)xn ⊗ (δ−1 ◦ t0)y0]

+ (−1)n
1

2
[snxn ⊗ δ0y0 + (−1)nxn ⊗ (t1 ◦ δ0)y0]

=
1

2
[(∂n−1 ◦ sn)xn ⊗ y0 + (sn+1 ◦ ∂n)xn ⊗ y0]

+
1

2

[
(∂n−1 ◦ sn)xn ⊗ (δ−1 ◦ t0)y0

+ (sn+1 ◦ ∂n)xn ⊗ (δ−1 ◦ t0)y0 + xn ⊗ (t1 ◦ δ0)y0

]

=
1

2
[xn ⊗ y0 + xn ⊗ (δ−1 ◦ t0)y0 + xn ⊗ (t1 ◦ δ0)y0]

=
1

2
[xn ⊗ y0 + xn ⊗ y0] = xn ⊗ y0.

This shows (dn−1 ◦ kn + kn+1 ◦ dn) (xn ⊗ y0) = xn⊗y0. Similarly, we
can show that, for x0 ⊗ yn ∈ X0⊗̂Yn,

(dn−1 ◦ kn + kn+1 ◦ dn) (x0 ⊗ yn) = x0 ⊗ yn.
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Now we consider xp ⊗ yq ∈ Xp⊗̂Yq for p, q ≥ 1 and p+ q = n. Then

(dn−1 ◦ kn) (xp ⊗ yq) =
1

2
dn−1 [spxp ⊗ yq + (−1)pxp ⊗ tqyq]

=
1

2

[
(∂p−1 ◦ sp)xp ⊗ yq + (−1)p−1spxp ⊗ δqyq

]
+

1

2

[
(−1)p∂pxp ⊗ tqyq + (−1)2pxp ⊗ (δq−1 ◦ tq)yq

]
and also

(kn+1 ◦ dn) (xp ⊗ yq)
= kn+1 (∂pxp ⊗ yq + (−1)pxp ⊗ δqyq)

=
1

2

[
(sp+1 ◦ ∂p)xp ⊗ yq + (−1)p+1∂pxp ⊗ tqyq

]
+

1

2

[
(−1)pspxp ⊗ δqyq + (−1)2pxp ⊗ (tq+1 ◦ δq)yq

]
.

Hence

(dn−1 ◦ kn + kn+1 ◦ dn) (xp ⊗ yq)

=
1

2

[
(∂p−1 ◦ sp)xp ⊗ yq + (−1)p−1spxp ⊗ δqyq

]
+

1

2

[
(−1)p∂pxp ⊗ tqyq + (−1)2pxp ⊗ (δq−1 ◦ tq)yq

]
+

1

2

[
(sp+1 ◦ ∂p)xp ⊗ yq + (−1)p+1∂pxp ⊗ tqyq

]
+

1

2

[
(−1)pspxp ⊗ δqyq + (−1)2pxp ⊗ (tq+1 ◦ δq)yq

]
=

1

2
[(∂p−1 ◦ sp)xp ⊗ yq + (sp+1 ◦ ∂p)xp ⊗ yq]

+
1

2
[xp ⊗ (δq−1 ◦ tq)yq + xp ⊗ (tq+1 ◦ δq)yqq]

= xp + yq.

Thus (dn−1 ◦ kn + kn+1 ◦ dn) (xp ⊗ yq) = xp ⊗ yq.
By linear properties of d∗ and k∗, we can conclude

dn−1 ◦ kn + kn+1 ◦ dn = id.

From now on, we denote the projective tensor products formed from
the standard G- and K-resolutions by

(
B(G)⊗̂B(K)

)
∗. Thus, for every
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n ≥ 0 (
B(G)⊗̂B(K)

)
n

=
⊕

p+q=n+2
1≤p≤n+1

Bp(G)⊗̂Bq(K).

Corollary 2.8. The sequence (2.8.1) below

0 R
(
B(G)⊗̂B(K)

)
0

(
B(G)⊗̂B(K)

)
1

· · ·d−1 d0 d1

is a strong resolution of the trivial G×K-module R.

Proof. Recall that R⊗̂R = R.
From Theorem 1.8, the standard G-resolution

0 R B(G) B2(G) B3(G) · · ·
∂−1

s0

∂0

s1

∂1

s2

∂2

s3

and the standard K-resolution

0 R B(K) B2(K)) B3(K) · · ·
δ−1

t0

δ0

t1

δ1

t2

δ2

t3

are strong, where the contracting homotopies {sn} and {tn} are defined
as the same formula in Theorem 1.8. Notice that, for α ∈ B(G) and
g ∈ G,

‖ (∂−1 ◦ s0) (α)(g)‖ = ‖∂−1 (α(eG)) (g)‖ = ‖α(eG)‖ ≤ ‖α‖.
Hence ‖∂−1 ◦ s0‖ ≤ 1. Similarly, we have ‖δ−1 ◦ t0‖ ≤ 1. Thus it follows
from Theorem 2.7.

3. Bounded cohomology of product of groups

Now we consider bounded cohomology groups of product of groups.
Recall that the (external) direct product G × K is also a discrete

group with the operation defined coordinatewise. Let M be a Banach
space. Similar to B(G,M), it is easy to see that the space B(G×K,M)
of all bounded functions f : G×K →M is a (bounded) G×K-module
with the action defined by

((x, y) · f) (a, b) = f(ax, by) for (x, y), (a, b) ∈ G×K.
Again, R forms a bounded G×K-module with the trivial G×K-action.
For each n > 0, we consider the Cartesian product (G × K)n. We
denote by Bn(G ×K) the set of all real -valued bounded functions f :
(G×K)n → R, where

‖f‖ = sup{‖f(z1, · · · , zn)‖ | (z1, · · · , zn) ∈ (G×K)n}
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for zi = (xi, yi) ∈ G×K. It is clear that Bn(G×K) is a Banach space
with the norm ‖ · ‖.

Observe that the Banach space Bn(G×K) have the similar properties
of Bn(G). We list some for our convenience.

Remark 3.1. Let n be a positive integer.

(1): Bn+1(G×K) is isomorphic to B (G×K,Bn(G×K)).
(2): Bn(G×K) is a boundedG×K-module with the following action:

for (x, y) ∈ G×K and ((a1, b1), · · · , (an−1, bn−1), (an, bn)) ∈ (G×
K)n

((x, y) · f) ((a1, b1), · · · , (an−1, bn−1), (an, bn))

= f ((a1, b1), · · · , (an−1, bn−1), (anx, bny)) .

(3):
(
Bn+1(G×K)

)G×K
is isomorphic to Bn(G×K) for every n >

0. In particular, (B(G×K))G×K is isomorphic to R.

Corollary 3.2. Every G ×K-module Bn(G ×K) for n > 0 is rela-
tively injective.

Proof. Let M be a Banach space. As G × K is a discrete group, a
G×K-module B(G×K,M) is a relatively injective by Proposition 1.5.
Since Bn(G × K) is isomorphic to B

(
G×K,Bn−1(G×K)

)
for every

n > 0, Bn(G×K) is also relatively injective.

Corollary 3.3. The sequence

(3.3.1) 0→ R d̃−1−−→ B(G×K)
d̃0−→ B2(G×K)

d̃1−→ B3(G×K)
d̃2−→ · · ·

is a strong and relatively injective G×K-resolution of the trivial G×K-

module R, where the boundary operators d̃∗ is defined by the same
formula as in (1.8.2).

Proof. Let zi = (xi, yi) ∈ G ×K and e = (eG, eK) be the identity of

G×K. Notice that the boundary operators d̃∗ are defined by the same
formulas in (1.8.2) as follows:

d̃−1(r)(a, b) = r

d̃n(f)(z0, z1, . . . , zn, zn+1)

= (−1)n+1f(z1, . . . , zn+1) +

n∑
i=0

(−1)n−if(z0, . . . , zizi+1, . . . , zn+1).
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Also, we define linear operators t0 : B(G×K)→ R and tn : Bn+1(G×
K)→ Bn(G×K) for n > 0 as follows:

t0(f) = f(eG, eK) and tn(f)(z1, · · · , zn) = f(z1, · · · , zn, e).

Then, it is easy to verify that the sequence (3.3.1) is a strong G × K-
resolution with contracting homotopy t∗. By Corollary 3.2, the sequence
(3.3.1) is also relatively injective.

Notice that the sequence (3.3.1) is the standard G × K-resolution.
Hence the nth cohomology group of its induced complex
(3.3.2)

0→ (B(G×K))G×K
d̃0−→
(
B2(G×K)

)G×K d̃1−→
(
B3(G×K)

)G×K d̃2−→ · · ·

is Ĥn(G×K). Recall that the complex (3.3.2) is equal to

(3.3.3) 0→ R d̃0−→ B(G×K)
d̃1−→ B2(G×K)

d̃2−→ B3(G×K)
d̃3−→ · · · .

Now we construct another relatively injective G×K-module.

Theorem 3.4. Let U and V be Banach spaces. Then
B(G,U)⊗̂B(K,V ) is a relatively injective G×K-module. Furthermore,
every G×K-module

(
B(G)⊗̂B(K)

)
n

for n ≥ 0 is relatively injective.

Proof. By Proposition 2.5, B(G,U)⊗̂B(K,V ) is a (G×K)-module.
Using a similar idea in Proposition 1.5, we show a (G ×K)-module

B(G,U)⊗̂B(K,V ) is relatively injective. Let λ : W1 → W2 be any
given strongly injective G×K-morphism equipped with a bounded linear
operator σ : W2 → W1 such that σ ◦ λ = id and ‖σ‖ ≤ 1. Also,
let Φ : W1 → B(G,U)⊗̂B(K,V ) be any given G × K-morphism. For
ω ∈ W1, notice that Φ(ω) is represented by Φ(ω) =

∑∞
k=1 αk ⊗ βk for

αk ∈ B(G,U) and βk ∈ B(K,V ). In this case, for x ∈ G and y ∈ K,

Φ(ω)(x, y) =
∞∑
k=1

αk(x)⊗ βk(y).

We consider the diagram illustrating the relatively injectivity

(3.4.1)

W1 W2 σ ◦ λ = id

B(G,U)⊗̂B(K,V )

λ

Φ

σ

Γ

Let (eG, eK) be the identity of G×K.



648 HeeSook Park

For w ∈W2, we define Γ : W2 → B(G,U)⊗̂B(K,V ) by the formula

Γ(w)(x, y) = Φ (σ ((x, y) · w)) (eG, eK) for x ∈ G and y ∈ K.

First, we show that Γ is a G ×K-morphism. Let w ∈ W2 and (a, b) ∈
G×K. Then for x ∈ G and y ∈ K, we have

Γ((a, b) · w)(x, y) = Φ (σ ((x, y) · ((a, b) · w))) (eG, eK)

= Φ (σ ((xa, yb) · w))) (eG, eK) = Γ(w)(xa, yb)

= ((a, b) · Γ(w)) (x, y).

Thus Γ ((a, b) · w) = (a, b) · Γ(w) and so Γ is a G×K-morphism.
Secondly, we show that Γ ◦ λ = Φ. Let ω ∈ W1. For x ∈ X and

y ∈ Y , we have

(Γ ◦ λ)(ω)(x, y)= Γ (λ(ω)) (x, y) = Φ (σ ((x, y) · λ(ω))) (eG, eK)

= Φ (σ (λ ((x, y) · ω))) (eG, eK) = Φ ((x, y) · ω) (eG, eK)

= ((x, y) · Φ)(ω)(eG, eK)=Φ(ω)(eGx, eKy)=Φ(ω)(x, y).

Finally, for w ∈W2, notice that

‖Γ(w)(x, y)‖ = ‖Φ (σ ((x, y) · w)) (eG, eK)

≤ ‖Φ‖‖σ‖‖(x, y) · w‖ ≤ ‖Φ‖‖(x, y) · w‖ ≤ ‖Φ‖‖w‖.

Thus ‖Γ‖ ≤ ‖Φ‖ and also Γ is bounded. Hence B(G,U)⊗̂B(K,V ) is a
relatively injective G×K-module.

By setting that U = R and V = R, B(G)⊗̂B(K) is a relatively injec-
tive G×K-module. Also, for each p > 0 and q > 0, the G×K-module
Bp(G)⊗̂Bq(K) is isomorphic to B

(
G,Bp−1(G)

)
⊗̂B

(
K,Bq−1(K)

)
and

so is relatively injective. Recall that(
B(G)⊗̂B(K)

)
n

=
⊕

p+q=n+2
1≤p≤n+1

Bp(G)⊗̂Bq(K).

By using projections π and injection ρ(
B(G)⊗̂B(K)

)
n

π−→ Bp(G)⊗̂Bq(K)
ρ−→
(
B(G)⊗̂B(K)

)
n
,

it is easy to prove that its relatively injective property by the same
method as the ordinary case shown in [5] that the direct product of
injective modules is also injective.

Remark 3.5. From Remark 2.6, we have(
B(G)⊗̂B(K)

)G×K
0

=
(
B(G)⊗̂B(K)

)G×K
= R⊗̂R = R
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and for n ≥ 1

(
B(G)⊗̂B(K)

)G×K
n

=

 ⊕
p+q=n+2
1≤p≤n+1

Bp(G)⊗̂Bq(K)


G×K

=
⊕

p+q=n+2
1≤p≤n+1

Bp(G)G⊗̂Bq(K)K

=
⊕
p+q=n
0≤p≤n

Bp(G)⊗̂Bq(K)

=
(
B∗(G)⊗̂B∗(K)

)
n
.

Theorem 3.6. The cohomology groups H∗(B∗(G)⊗̂B∗(K)) are iso-

morphic to the bounded cohomology groups Ĥ∗(G×K) of G×K, that
is, there is an isomorphism of groups

H∗(B∗(G)⊗̂B∗(K)) ∼= Ĥ∗(G×K).

Proof. Recall that Ĥ∗(G ×K) can be computed by the complex in-
duced from the standard G×K-resolution

(3.3.1) 0→ R d̃−1−−→ B(G×K)
d̃0−→ B2(G×K)

d̃1−→ B3(G×K)
d̃2−→ · · · .

Recall that, by Corollary 2.8 and Theorem 3.4, the sequence (2.8.1)
below

0 R
(
B(G)⊗̂B(K)

)
0

(
B(G)⊗̂B(K)

)
1

(
B(G)⊗̂B(K)

)
2

· · ·d−1 d0 d1 d2

is a strong and relatively injective G×K-resolution of the trivial G×K-
module R. It induces a complex

(3.6.1) 0 R
(
B(G)⊗̂B(K)

)G×K
1

(
B(G)⊗̂B(K)

)G×K
2

· · · .d0=0 d1 d2

and its nth cohomology is denoted by Hn
(
B(G)⊗̂B(K)

)
.

Since all cohomology groups of the complexes induced from strong
and relatively injective G×K-resolutions of the trivial G×K-module R
are canonically isomorphic by Proposition 1.11, the cohomology groups

H∗
(
B(G)⊗̂B(K)

)
and Ĥ∗(G×K) are isomorphic. On the other hand,

from Remark 2.4, the nth cohomology of the complex (2.4.3)

(2.4.3) 0 R
(
B∗(G)⊗̂B∗(K)

)
1

(
B∗(G)⊗̂B∗(K)

)
2

· · ·
d′0=0 d′1 d′2
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is Hn(B∗(G)⊗̂B∗(K)). Observe that the boundary operators d′∗ in
(2.4.3) are equal to d∗ in (3.6.1), which are defined by the same bound-
ary operators of the standard G- and K-resolutions. Also, by Remark
3.5, the complexes (3.6.1) and (2.4.3) are the same. So the cohomology
groups H∗(B∗(G)⊗̂B∗(K)) and H∗

(
B(G)⊗̂B(K)

)
are also the same.

Hence the cohomology groups H∗(B∗(G)⊗̂B∗(K)) and Ĥ∗(G×K) are
isomorphic.
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