SOME REMARKS ON BOUNDED COHOMOLOGY GROUP OF PRODUCT OF GROUPS

HeeSook Park

Abstract

In this paper, for discrete groups G and K, we show that the bounded cohomology group of $G \times K$ is isomorphic to the cohomology group of the complex of the projective tensor product $B^{*}(G) \widehat{\otimes} B^{*}(K)$, where $B^{*}(G)$ and $B^{*}(K)$ are the complexes of bounded cochains with real coefficients \mathbb{R} of G and K, respectively.

1. Introduction

Throughout this paper, G and K denote discrete groups. Also, we consider Banach spaces over the field of real numbers \mathbb{R}.

Bounded cohomology of G with real coefficients, denoted by $\widehat{H}^{*}(G)$, is cohomology of the bounded cochain complex $B^{*}(G)$, which are Banach spaces. Then we can define bounded cohomology $\widehat{H}^{*}(G \times K)$ of the product of groups $G \times K$ as the cohomology of the bounded cochain complex $B^{*}(G \times K)$. In [4], under some conditions required for a category of Banach spaces, it is shown that there is a spectral sequence with

$$
E_{2}^{p, q}=\bigoplus_{s+t=q} \operatorname{Tor}^{p}\left(\widehat{H}^{s}(G), \widehat{H}^{t}(K)\right)
$$

and it converges to $H^{n}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$. So, it seems natural to consider the relationship between cochian complexes $B^{*}(G) \widehat{\otimes} B^{*}(K)$ and $B^{*}(G \times K)$, and compare $H^{n}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$ with $\widehat{H}^{n}(G \times K)$.

As we deal with bounded cohomology of a group, we first briefly review its definition developed by Ivanov. In [2], he defined it by using the method of relative homological algebra, which we will modify, and cultivated the theory of bounded cohomology.

[^0]Definition 1.1. Let V be a Banach space equipped with a norm $\|\cdot\|$. We say V is a bounded left G-module if there is a left action of G on V such that $\|g \cdot v\| \leq\|v\|$ for all $g \in G$ and $v \in V$.

Similarly, we can define a bounded right G-module. For simplicity, a bounded left G-module will be called a G-module.

Notice that \mathbb{R} is considered as a G-module with the trivial G-action.
Let M be a Banach space equipped with a norm $\|\cdot\|_{M}$ and $B(G, M)$ be the set of all bounded functions on G, that is,

$$
B(G, M)=\left\{f: G \rightarrow M \mid\|f\|=\sup _{a \in G}\|f(a)\|_{M}<\infty\right\}
$$

Then $B(G, M)$ is a Banach space with the norm $\|\cdot\|$. Similarly, for every $n \geq 1$, let G^{n} be the n-product of G so that $G^{n}=\underbrace{G \times \cdots \times G}_{n}$. We denote by $B^{n}(G, M)$ the set of all bounded functions on G^{n}, that is,

$$
B^{n}(G, M)=\left\{f: G^{n} \rightarrow M \mid\|f\|<\infty\right\}
$$

where $\|f\|=\sup \left\{\left\|f\left(a_{1}, \cdots, a_{n}\right)\right\|_{M} \mid\left(a_{1}, \cdots, a_{n}\right) \in G^{n}\right\}$.
In case that $M=\mathbb{R}$, we denote $B^{n}(G, \mathbb{R})$ by $B^{n}(G)$.
Remark 1.2. (1): For a Banach space M, every $B^{n}(G, M)$ for $n>0$ is a G-module with the action defined by
$(x \cdot f)\left(g_{1}, g_{2}, \cdots, g_{n-1}, g_{n}\right)=f\left(g_{1}, g_{2}, \cdots, g_{n-1}, g_{n} x\right)$ for $x \in G$.
(2): $B^{n+1}(G)$ is isomorphic with $B\left(G, B^{n}(G)\right)$, where $B^{n}(G)$ is considered simply as a Banach space.
Definition 1.3. Let W_{1} and W_{2} be G-modules. A bounded linear operator $\lambda: W_{1} \rightarrow W_{2}$ is called a G-morphism if λ commutes with the action of G. Furthermore, we say an injective G-morphism $\lambda: W_{1} \rightarrow W_{2}$ is strongly injective if there is a bounded linear operator $\sigma: W_{2} \rightarrow W_{1}$ such that $\sigma \circ \lambda=i d$ and $\|\sigma\| \leq 1$.

Definition 1.4. Let X be a G-module. We say X is relatively injective if for any strongly injective G-morphism $\lambda: W_{1} \rightarrow W_{2}$ of G modules and any given G-morphism $\Phi: W_{1} \rightarrow X$, there is a G-morphism $\Gamma: W_{2} \rightarrow X$ such that $\Gamma \circ \lambda=\Phi$ and $\|\Gamma\| \leq\|\Phi\|$.

Notice that Definition 1.4 is illustrated by the following commutative diagram

Proposition 1.5. For any group G and a Banach space M, the G module $B(G, M)$ is relatively injective. In particular, every G-module $B^{n}(G)$ for $n>0$ is relatively injective.

Proof. This is Lemma (3.2.2) in [2]. We review the idea for our own use and refer to [2] in detail.

We consider the following diagram in (1.4.1) by setting $X=B(G, M)$:

where λ is a strongly injective G-morphism and σ is a bounded linear operator satisfying $\sigma \circ \lambda=i d$ and $\|\sigma\| \leq 1$. For $w \in W_{2}$ and $x \in G$, we define

$$
\Gamma(w)(x)=\Phi(\sigma(x \cdot w))\left(e_{G}\right)
$$

where e_{G} is the identity of G.
Then, by a standard calculation, we can show Γ is a G-morphism such that $\Gamma \circ \lambda=\Phi$ and $\|\Gamma\| \leq\|\Phi\|$. Hence $B(G, M)$ is a relatively injective G-module. Then, since $B(G)=B(G, \mathbb{R})$, a G-module $B(G)$ is relatively injective. For $n \geq 1$, as $B^{n+1}(G)$ is isomorphic to $B\left(G, B^{n}(G)\right)$ from Remark 1.2, a G-module $B^{n}(G)$ for every $n>0$ is also relatively injective.

Definition 1.6. For a G-module V, a G-resolution of V is a sequence of G-modules and G-morphisms of the form

$$
\begin{equation*}
0 \rightarrow V \xrightarrow{d_{-1}} V_{0} \xrightarrow{d_{0}} V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \cdots \tag{1.6.1}
\end{equation*}
$$

such that it is exact as a sequence of vector spaces over \mathbb{R}. We say this G-resolution (1.6.1) of V is strong if it is provided with a contracting homotopy $t_{0}: V_{0} \rightarrow V$ and $t_{n}: V_{n} \rightarrow V_{n-1}$ for $n>0$ satisfying the condition $\left\|t_{n}\right\| \leq 1$ for all $n \geq 0$, that is, a sequence $\left\{t_{n}\right\}$ of linear operators

$$
V \stackrel{t_{0}}{\leftarrow} V_{0} \stackrel{t_{1}}{\leftarrow} V_{1} \stackrel{t_{2}}{\leftarrow} V_{2} \stackrel{t_{3}}{\leftrightarrows} \cdots
$$

such that $d_{n-1} \circ t_{n}+t_{n+1} \circ d_{n}=i d$ for $n \geq 0$ and $t_{0} \circ d_{-1}=i d$.
Also, we say this G-resolution (1.6.1) of V is relatively injective if every V_{n} is a relatively injective G-module.

Remark 1.7. For G-modules U and V, let

$$
0 \rightarrow U \xrightarrow{\partial_{-1}} U_{0} \xrightarrow{\partial_{0}} U_{1} \xrightarrow{\partial_{1}} \cdots
$$

be a strong resolution of U, and

$$
0 \rightarrow V \xrightarrow{\partial_{-1}^{\prime}} V_{0} \xrightarrow{\partial_{0}^{\prime}} V_{1} \xrightarrow{\partial_{1}^{\prime}} \cdots
$$

be a complex of relatively injective G-modules. Then, as in the ordinary case of the Comparison Theorem [3], it is easy to check that any G morphism $\rho: U \rightarrow V$ can be extended to a G-morphism of complexes, that is, there are G-morphisms $\gamma_{n}: U_{n} \rightarrow V_{n}$ for $n \geq 0$ such that $\gamma_{n+1} \circ \partial_{n}=\partial_{n}^{\prime} \circ \gamma_{n}$ and $\gamma_{0} \circ \partial_{-1}=\partial_{-1}^{\prime} \circ \rho$. Also, any two such extensions are chain homotopic.

Theorem 1.8. The sequence of G-modules

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{d_{-1}} B(G) \xrightarrow{d_{0}} B^{2}(G) \xrightarrow{d_{1}} B^{3}(G) \xrightarrow{d_{2}} \cdots \tag{1.8.1}
\end{equation*}
$$

is a strong and relatively injective G-resolution of the trivial G-module \mathbb{R}, where boundary operators d_{*} are defined by the formulas: for $n \geq 0$

$$
d_{n}(f)\left(g_{0}, g_{1}, \ldots, g_{n+1}\right)
$$

$$
\begin{equation*}
=(-1)^{n+1} f\left(g_{1}, \ldots, g_{n+1}\right)+\sum_{i=0}^{n}(-1)^{n-i} f\left(g_{0}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \tag{1.8.2}
\end{equation*}
$$

and $d_{-1}(r)(g)=r$ for $r \in \mathbb{R}$ and every $g \in G$.
Proof. It follows from (3.4) in [2]. In fact, the operators

$$
t_{0}: B(G) \rightarrow \mathbb{R} \quad \text { and } \quad t_{n}: B^{n+1}(G) \rightarrow B^{n}(G) \text { for } n>0
$$

defined by the formulas

$$
t_{0}(f)=f\left(e_{G}\right) \quad \text { and } \quad t_{n}(f)\left(g_{1}, \cdots, g_{n}\right)=f\left(g_{1}, \cdots, g_{n}, e_{G}\right)
$$

provide a contracting homotopy for the sequence (1.8.1).
Definition 1.9. The strong and relatively injective G-resolution of the trivial G-module \mathbb{R} in (1.8.1) is called the standard G-resolution.

Let V be a G-module. The space of all elements of V invariant under the action of G is denoted by V^{G}. Thus

$$
V^{G}=\{v \in V \mid g \cdot v=v \text { for all } g \in G\} .
$$

Observe that, as V^{G} is a closed subspace of a Banach space V, it is also a Banach space.

Let $0 \rightarrow \mathbb{R} \xrightarrow{d_{-1}} V_{0} \xrightarrow{d_{0}} V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \cdots$ be a G-resolution of \mathbb{R}. It is easy to check that its induced sequence

$$
0 \rightarrow V_{0}^{G} \xrightarrow{d_{0}} V_{1}^{G} \xrightarrow{d_{1}} V_{2}^{G} \xrightarrow{d_{2}} \cdots
$$

obtained by taking the spaces of G-invariant elements is a complex.
Definition 1.10. Let $0 \rightarrow \mathbb{R} \xrightarrow{d_{-1}} V_{0} \xrightarrow{d_{0}} V_{1} \xrightarrow{d_{1}} V_{2} \xrightarrow{d_{2}} \cdots$ be a strong and relatively injective G-resolution of the trivial G-module \mathbb{R}. The nth cohomology of its induced complex

$$
\begin{equation*}
0 \rightarrow V_{0}^{G} \xrightarrow{d_{0}} V_{1}^{G} \xrightarrow{d_{1}} V_{2}^{G} \xrightarrow{d_{2}} \cdots \tag{1.10.1}
\end{equation*}
$$

is called the n-th bounded cohomology of G. We denote it by $\widehat{H}^{n}(G)$.
Proposition 1.11. The bounded cohomology groups $\widehat{H}^{*}(G)$ of G depend only on G.

Proof. Let

$$
0 \rightarrow \mathbb{R} \rightarrow V_{0} \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots \text { and } 0 \rightarrow \mathbb{R} \rightarrow U_{0} \rightarrow U_{1} \rightarrow U_{2} \rightarrow \cdots
$$

be two strong and relatively injective G-resolutions of \mathbb{R}. From Remark 1.7 , there are G - morphisms $\lambda_{n}: V_{n} \rightarrow U_{n}$ and $\gamma_{n}: U_{n} \rightarrow V_{n}$ extending the identity map on \mathbb{R}. Notice that both $\lambda_{*} \circ \gamma_{*}$ and $\gamma_{*} \circ \lambda_{*}$ are chain homotopic to the identities. Then, as explained in [2], the morphisms λ_{*} and γ_{*} respectively induce maps of complexes $\lambda_{n}^{G}: V_{n}^{G} \rightarrow U_{n}^{G}$ and $\gamma_{n}^{G}: U_{n}^{G} \rightarrow V_{n}^{G}$. Notice that the homotopy between $\lambda_{*} \circ \gamma_{*}$ and $i d$ defines a homotopy between $\lambda_{*}^{G} \circ \gamma_{*}^{G}$ and $i d$. Similarly, $\gamma_{*}^{G} \circ \lambda_{*}^{G}$ is chain homotopic to the identity. This shows that λ_{*}^{G} is an isomorphism. Finally, as any two extensions $V_{*} \rightarrow U_{*}$ are chain homotopic, this isomorphism λ_{*}^{G} is uniquely determined. Hence, the cohomology groups of the complexes

$$
0 \rightarrow V_{0}^{G} \rightarrow V_{1}^{G} \rightarrow V_{2}^{G} \rightarrow \cdots \text { and } \quad 0 \rightarrow U_{0}^{G} \rightarrow U_{1}^{G} \rightarrow U_{2}^{G} \rightarrow \cdots
$$

are canonically isomorphic.
Notice that the group $\widehat{H}^{n}(G)$ has a vector space structure over \mathbb{R}. On the other hand, as $\widehat{H}^{n}(G)$ is a quotient space of a normed space, it has the natural seminorm induced by the norm on G-module in the resolution used for its computation. Thus the seminorm on $\widehat{H}^{*}(G)$ depends on the choice of a resolution.

Definition 1.12. The canonical seminorm on $\widehat{H}^{n}(G)$ is defined as the infimum of seminorms arising from all strong and relatively injective G-resolutions of \mathbb{R}.

Again, in [2], it is proved that the canonical seminorm on $\widehat{H}^{n}(G)$ can be achieved by the standard G-resolution. So it seems reasonable to use the standard G-resolution to compute $\widehat{H}^{*}(G)$.

Notice that, for $f \in B^{n}(G)$ and $n \geq 1$

```
\(f \in\left(B^{n}(G)\right)^{G}\)
\(\Leftrightarrow x \cdot f=f\) for \(x \in G\)
\(\Leftrightarrow(x \cdot f)\left(g_{1}, \cdots, g_{n}\right)=f\left(g_{1}, \cdots, g_{n}\right)\) for \(x \in G\) and \(\left(g_{1}, \cdots, g_{n}\right) \in G^{n}\)
\(\Leftrightarrow f\left(g_{1}, \cdots, g_{n-1}, g_{n} x\right)=f\left(g_{1}, \cdots, g_{n-1}, g_{n}\right)\) for \(x \in G\) and \(\left(g_{1}, \cdots, g_{n}\right) \in G^{n}\).
```

Thus $f \in B^{n}(G)$ is an element of $\left(B^{n}(G)\right)^{G}$ if and only if f is not affected by the last component of G^{n}.

Remark 1.13. (1): For every $n>0,\left(B^{n+1}(G)\right)^{G}$ and $B^{n}(G)$ are isomorphic as Banach spaces. In particular, $(B(G))^{G}$ is isomorphic to \mathbb{R}.
(2): The standard G-resolution (1.8.1) induces a complex

$$
0 \rightarrow B(G)^{G} \xrightarrow{d_{0}=0}\left(B^{2}(G)\right)^{G} \xrightarrow{d_{1}}\left(B^{3}(G)\right)^{G} \xrightarrow{d_{2}}\left(B^{4}(G)\right)^{G} \xrightarrow{d_{3}} \cdots
$$

and this can be written as

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{d_{0}=0} B(G) \xrightarrow{d_{1}} B^{2}(G) \xrightarrow{d_{2}} B^{3}(G) \xrightarrow{d_{3}} \cdots . \tag{1.13.1}
\end{equation*}
$$

The boundary operator d_{*} in the complex (1.13.1) can be redefined by

$$
\begin{aligned}
d_{n}(f)\left(g_{1}, g_{2}, \ldots, g_{n+1}\right) & =f\left(g_{2}, \ldots, g_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
& +f\left(g_{1}, \ldots, g_{n}\right)
\end{aligned}
$$

The sequence (1.13.1) is a complex of Banach spaces and its cohomology is $\widehat{H}^{*}(G)$ equipped with the canonical seminorm.

In Section 2, we study tensor products of Banach spaces and form a $G \times K$-resolution from the standard G - and K-resolutions. In Section 3, by using the method of relative homological algebra as in [2], we prove the cohomology groups $\widehat{H}^{*}(G \times K)$ and $H^{*}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$ are isomorphic.

2. The tensor product of resolutions

We review a tensor product of Banach spaces.

For Banach spaces X with a norm $\|\cdot\|_{X}$ and Y with a norm $\|\cdot\|_{Y}$, we consider their algebraic tensor product $X \otimes Y$ and define the projective tensor norm $\|\cdot\|_{\pi}$ on $X \otimes Y$ as follows: for $\omega \in X \otimes Y$,

$$
\|\omega\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|_{X}\left\|y_{i}\right\|_{Y}, \text { where } \omega=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

where the infimum is taken over all representations of $\omega \in X \otimes Y$.
Unless the spaces X and Y are finite dimensional, $X \otimes Y$ endowed with projective tensor norm is not complete and so not a Banach space.

Definition 2.1. The projective tensor product of Banach spaces X and Y is defined as the completion of $X \otimes Y$ with respect to the projective tensor norm $\|\cdot\|_{\pi}$. It is denoted by $X \widehat{\otimes} Y$.

Proposition 2.2. Let X and Y be Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, respectively. Then $\|x \otimes y\|_{\pi}=\|x\|_{X}\|y\|_{Y}$ for every $x \in X$ and $y \in Y$.

Proof. This is Proposition 2.1. in [6].
In [6], it is shown that $\omega \in X \widehat{\otimes} Y$ if and only if, for every $\epsilon>0$, there exist $x_{k} \in X$ and $y_{k} \in Y$ such that

$$
\omega=\sum_{k=1}^{\infty} x_{k} \otimes y_{k} \text { and }\|\omega\|_{\pi} \leq \sum_{k=1}^{\infty}\left\|x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y} \leq\|\omega\|_{\pi}+\epsilon
$$

and also $\sum_{k=1}^{\infty}\left\|x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y}<\infty$. Thus
$\|\omega\|_{\pi}=\inf \left\{\sum_{k=1}^{\infty}\left\|x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y} \mid \sum_{k=1}^{\infty}\left\|x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y}<\infty, \omega=\sum_{k=1}^{\infty} x_{k} \otimes y_{k}\right\}$, where the infimum is taken over all representations of $\omega \in X \widehat{\otimes} Y$. For more properties of projective tensor products, we refer to [6].

Remark 2.3. In the category of Banach spaces and bounded linear morphisms, there exists finite (co)product. However, infinite (co)products do not exist as explained in [1].

Remark 2.4. From Remark 1.13, there is a complex of Banach spaces

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{\partial_{0}=0} B(G) \xrightarrow{\partial_{1}} B^{2}(G) \xrightarrow{\partial_{2}} B^{3}(G) \xrightarrow{\partial_{3}} \cdots . \tag{2.4.1}
\end{equation*}
$$

Similarly, for K, there is a complex of Banach spaces

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{\delta_{0}=0} B(K) \xrightarrow{\delta_{1}} B^{2}(K) \xrightarrow{\delta_{2}} B^{3}(K) \xrightarrow{\delta_{3}} \cdots . \tag{2.4.2}
\end{equation*}
$$

As in the ordinary case, for $n \geq 1$ we let

$$
\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{n}=\bigoplus_{p+q=n} B^{p}(G) \widehat{\otimes} B^{q}(K)
$$

From Remark 2.3, every $\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{n}$ for $n \geq 1$ is a Banach space. Then we have a complex of Banach spaces

$$
\begin{equation*}
0 \longrightarrow \mathbb{R} \xrightarrow{d_{0}^{\prime}=0}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{1} \xrightarrow{d_{1}^{\prime}}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{2} \xrightarrow{d_{2}^{\prime}} \cdots \tag{2.4.3}
\end{equation*}
$$

where the boundary operators d_{n}^{\prime} are defined on the monomial tensor $\alpha \otimes \beta \in B^{p}(G) \widehat{\otimes} B^{q}(K)$ by the formula

$$
d_{n}^{\prime}(\alpha \otimes \beta)=\partial_{p} \alpha \otimes \beta+(-1)^{p} \alpha \otimes \delta_{q} \beta
$$

As we know it, the nth cohomology group of the complex (2.4.3) is denoted by $H^{n}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$.

Let U and V be Banach spaces. Recall that we have a G module $B(G, U)$ and a K-module $B(K, V)$. We consider their projective tensor product $B(G, U) \widehat{\otimes} B(K, V)$. A monomial tensor $\alpha \otimes \beta \in$ $B(G, U) \widehat{\otimes} B(K, V)$ can be considered as a function

$$
\alpha \otimes \beta: G \times K \rightarrow U \otimes V
$$

defined by $(\alpha \otimes \beta)(x, y)=\alpha(x) \otimes \beta(y)$. Notice that $G \times K$ acts diagonally on each monomial tensor $\alpha \otimes \beta \in B(G, U) \widehat{\otimes} B(K, V)$ by

$$
(x, y) \cdot(\alpha \otimes \beta)=(x \cdot \alpha) \otimes(y \cdot \beta)
$$

Proposition 2.5. Let U and V be Banach spaces. Then the projective tensor product $B(G, U) \widehat{\otimes} B(K, V)$ is a $G \times K$-module with respect to the diagonal action. Furthermore, $B^{p}(G) \widehat{\otimes} B^{q}(K)$ is a $G \times K$-module for positive integers p and q.

Proof. Recall that $B(G, U) \widehat{\otimes} B(K, V)$ is a Banach space.
Let $(x, y) \in G \times K$ and $\omega \in B(G, U) \widehat{\otimes} B(K, V)$ be represented by $\omega=\sum_{k=1}^{\infty} \alpha_{k} \otimes \beta_{k}, \quad$ where $\alpha_{k} \in B(G, U)$ and $\beta_{k} \in B(K, V)$ for each k.

By extending linearly the diagonal $G \times K$ action on each monomial tensor, it is clear that $G \times K$ acts on $B(G, U) \widehat{\otimes} B(K, V)$ by

$$
\begin{equation*}
(x, y) \cdot \omega=(x, y) \cdot\left(\sum_{k=1}^{\infty} \alpha_{i} \otimes \beta_{i}\right)=\sum_{k=1}^{\infty}\left(x \cdot \alpha_{k}\right) \otimes\left(y \cdot \beta_{k}\right) \tag{2.5.1}
\end{equation*}
$$

Notice that
$\|(x, y) \cdot \omega\|_{\pi} \leq\left\|\sum_{k=1}^{\infty}\left(x \cdot \alpha_{k}\right) \otimes\left(y \cdot \beta_{k}\right)\right\| \leq \sum_{k=1}^{\infty}\left\|x \cdot \alpha_{k}\right\|\left\|y \cdot \beta_{k}\right\| \leq \sum_{k=1}^{\infty}\left\|\alpha_{k}\right\|\left\|\beta_{k}\right\|$.
Since the projective tensor norm of ω is defined as the infimum arising from all norms of its representations, we have $\|(x, y) \cdot \omega\|_{\pi} \leq\|\omega\|_{\pi}$. Thus this diagonal action is bounded. Hence $B(G, U) \widehat{\otimes} B(K, V)$ is a ($G \times K$)-module.

The second statement follows from that $B^{p}(G) \widehat{\otimes} B^{q}(K)$ is isomorphic to

$$
B\left(G, B^{p-1}(G)\right) \widehat{\otimes} B\left(K, B^{q-1}(K)\right) .
$$

Now we consider the space of $G \times K$-invariant elements in $B^{p}(G) \widehat{\otimes} B^{q}(K)$.

Remark 2.6. From a diagonal action of $G \times K$ on $B^{p}(G) \widehat{\otimes} B^{q}(K)$ defined in (2.5.1), observe that G acts only on $B^{p}(G)$ and K only on $B^{q}(K)$. Hence it is easy to see that

$$
\left(B^{p}(G) \widehat{\otimes} B^{q}(K)\right)^{G \times K}=B^{p}(G)^{G} \widehat{\otimes} B^{q}(K)^{K}=B^{p-1}(G) \widehat{\otimes} B^{q-1}(K) .
$$

Now we construct a strong resolution from the tensor product of two strong resolutions.

Theorem 2.7. For a G-module A and a K-module B, let

$$
0 \longrightarrow A \underset{s_{0}}{\stackrel{\partial_{-1}}{\rightleftarrows}} X_{0} \stackrel{\partial_{0}}{\stackrel{s_{1}}{\rightleftarrows}} X_{1} \underset{s_{2}}{\stackrel{\partial_{1}}{\rightleftarrows}} X_{2} \stackrel{\partial_{2}}{\stackrel{s_{3}}{\rightleftarrows}} X_{3} \underset{s_{4}}{\stackrel{\partial_{3}}{\rightleftarrows}} X_{4} \stackrel{\partial_{4}}{\stackrel{s_{5}}{\rightleftarrows}} \cdots
$$

and

$$
0 \longrightarrow B \underset{t_{0}}{\stackrel{\delta_{-1}}{\rightleftarrows}} Y_{0} \underset{t_{1}}{\stackrel{\delta_{0}}{\rightleftarrows}} Y_{1} \underset{t_{2}}{\stackrel{\delta_{1}}{\rightleftarrows}} Y_{2} \underset{t_{3}}{\stackrel{\delta_{2}}{\rightleftarrows}} Y_{3} \underset{t_{4}}{\stackrel{\delta_{3}}{\rightleftarrows}} Y_{4} \underset{t_{5}}{\stackrel{\delta_{4}}{\rightleftarrows}} \cdots
$$

be the strong G - and K-resolutions of A and B, respectively, satisfying the conditions $\left\|\partial_{-1} \circ s_{0}\right\| \leq 1$ and $\left\|\delta_{-1} \circ t_{0}\right\| \leq 1$. For $n \geq 0$, let

$$
(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{n}=\bigoplus_{p+q=n} X_{p} \widehat{\otimes} Y_{q} .
$$

Then the sequence

$$
\begin{equation*}
0 \rightarrow A \widehat{\otimes} B \xrightarrow{d_{-1}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{0} \xrightarrow{d_{0}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{1} \xrightarrow{d_{1}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{2} \xrightarrow{d_{2}} \cdots \tag{2.7.1}
\end{equation*}
$$

is a strong $G \times K$-resolution of the $G \times K$-module $A \widehat{\otimes} B$, where the boundary operators d_{*} are defined as follows: $d_{-1}=\partial_{-1} \otimes \delta_{-1}$ and for $n \geq 0$

$$
d_{n}=\sum_{p+q=n} \partial_{p} \otimes i d_{Y_{q}}+(-1)^{p} i d_{X_{p}} \otimes \delta_{q} .
$$

Proof. It is easy to see that $A \widehat{\otimes} B$ and $(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{n}$ are $G \times K$-modules with a diagonal action. It is clear that the sequence (2.7.1) is a complex of $G \times K$-modules. So it is enough to construct the contracting homotopy, that is, a sequence of linear operators $k_{0}: X_{0} \widehat{\otimes} Y_{0} \rightarrow A \widehat{\otimes} B$ and for each $n \geq 0$

$$
k_{n+1}:(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{n+1} \rightarrow(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{n}
$$

such that

$$
k_{0} \circ d_{-1}=\mathrm{id}, \quad d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}=i d \quad \text { and } \quad\left\|k_{n}\right\| \leq 1 .
$$

Consider the sequence of Banach spaces

$$
0 \longrightarrow A \widehat{\otimes} B \underset{k_{0}}{\stackrel{d_{-1}}{\rightleftarrows}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{0} \underset{k_{1}}{\stackrel{d_{0}}{\rightleftarrows}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{1} \underset{k_{2}}{\stackrel{d_{1}}{\rightleftarrows}}(\mathbf{X} \widehat{\otimes} \mathbf{Y})_{2} \underset{k_{3}}{\stackrel{d_{2}}{\rightleftarrows}} \cdots
$$

We define the operator k_{0} as $k_{0}=s_{0} \otimes t_{0}$. It is clear that k_{0} is linear and $\left\|k_{0}\right\| \leq\left\|s_{0}\right\|\left\|t_{0}\right\| \leq 1$. Also, for $n=p+q \geq 1$ and $x_{p} \otimes y_{q} \in X_{p} \widehat{\otimes} Y_{q}$, we define the operator k_{n} as follows:
$k_{n}\left(x_{n} \otimes y_{0}\right)=\frac{1}{2}\left(s_{n}\left(x_{n}\right) \otimes y_{0}+s_{n}\left(x_{n}\right) \otimes \delta_{-1} t_{0}\left(y_{0}\right)\right) \quad$ for $p=n$ and $q=0$
$k_{n}\left(x_{0} \otimes y_{n}\right)=\frac{1}{2}\left(x_{0} \otimes t_{n}\left(y_{n}\right)+\partial_{-1} s_{0}\left(x_{0}\right) \otimes t_{n}\left(y_{n}\right)\right) \quad$ for $p=0$ and $q=n$
$k_{n}\left(x_{p} \otimes y_{q}\right)=\frac{1}{2}\left(s_{p}\left(x_{p}\right) \otimes y_{q}+(-1)^{p} x_{p} \otimes t_{q}\left(y_{q}\right)\right) \quad$ for $p, q \geq 1$.

It is clear that every k_{n} is linear. We show $\left\|k_{n}\right\| \leq 1$. It is enough to see that $\left\|k_{n}\left(x_{p} \otimes y_{q}\right)\right\|_{\pi} \leq\left\|x_{p} \otimes y_{q}\right\|_{\pi}$ for each monomial tensor $x_{p} \otimes y_{q} \in$
$X_{p} \widehat{\otimes} Y_{q}$. Notice that

$$
\begin{array}{ll}
\left\|k_{n}\left(x_{n} \otimes y_{0}\right)\right\|_{\pi} & \\
=\frac{1}{2}\left\|s_{n}\left(x_{n}\right) \otimes y_{0}+s_{n}\left(x_{n}\right) \otimes \delta_{-1} t_{0}\left(y_{0}\right)\right\|_{\pi} & \\
\leq \frac{1}{2}\left\|s_{n}\left(x_{n}\right) \otimes y_{0}\right\|_{\pi}+\frac{1}{2}\left\|s_{n}\left(x_{n}\right) \otimes \delta_{-1} t_{0}\left(y_{0}\right)\right\|_{\pi} & \\
=\frac{1}{2}\left\|s_{n}\left(x_{n}\right)\right\|\left\|y_{0}\right\|+\frac{1}{2}\left\|s_{n}\left(x_{n}\right)\right\|\left\|\delta_{-1} t_{0}\left(y_{0}\right)\right\| & \text { by Proposition } 2.2 \\
\leq \frac{1}{2}\left\|x_{n}\right\|\left\|y_{0}\right\|+\frac{1}{2}\left\|x_{n}\right\|\left\|\delta_{-1} t_{0}\right\|\left\|y_{0}\right\| & \\
\leq \frac{1}{2}\left\|x_{n}\right\|\left\|y_{0}\right\|+\frac{1}{2}\left\|x_{n}\right\|\left\|y_{0}\right\| & \left\|\delta_{-1} t_{0}\right\| \leq 1 \\
=\frac{1}{2}\left\|x_{n} \otimes y_{0}\right\|_{\pi}+\frac{1}{2}\left\|x_{n} \otimes y_{0}\right\|_{\pi} & \text { by Proposition } 2.2 \\
=\left\|x_{n} \otimes y_{0}\right\|_{\pi} &
\end{array}
$$

Similarly, we can show $\left\|k_{n}\left(x_{0} \otimes y_{n}\right)\right\|_{\pi} \leq\left\|x_{0} \otimes y_{n}\right\|_{\pi}$. Also,

$$
\begin{aligned}
\left\|k_{n}\left(x_{p} \otimes y_{q}\right)\right\|_{\pi} & =\frac{1}{2}\left\|s_{p}\left(x_{p}\right) \otimes y_{q}+(-1)^{p} x_{p} \otimes t_{q}\left(y_{q}\right)\right\|_{\pi} \\
& \leq \frac{1}{2}\left\|s_{p}\left(x_{p}\right) \otimes y_{q}\right\|_{\pi}+\frac{1}{2}\left\|x_{p} \otimes t_{q}\left(y_{q}\right)\right\|_{\pi} \\
& =\frac{1}{2}\left\|s_{p}\left(x_{p}\right)\right\|\left\|y_{q}\right\|+\frac{1}{2}\left\|x_{p}\right\|\left\|t_{q}\left(y_{q}\right)\right\| \\
& \leq \frac{1}{2}\left\|x_{p}\right\|\left\|y_{q}\right\|+\frac{1}{2}\left\|x_{p}\right\|\left\|y_{q}\right\|=\left\|x_{p}\right\|\left\|y_{q}\right\| \\
& =\left\|x_{p} \otimes y_{q}\right\|_{\pi} .
\end{aligned}
$$

Hence k_{n} is a linear operator such that $\left\|k_{n}\right\| \leq 1$ for each $n \geq 0$.
It remains to show that k_{*} is a contracting homotopy. By linearity, we only check it for a monomial tensor. First, we show $k_{0} \circ d_{-1}=i d$. For $a \otimes b \in A \widehat{\otimes} B$, we have

$$
\begin{aligned}
\left(k_{0} \circ d_{-1}\right)(a \otimes b) & =\left(s_{0} \otimes t_{0}\right) \circ\left(\partial_{-1} \otimes \delta_{-1}\right)(a \otimes b) \\
& =\left(s_{0} \circ \partial_{-1}\right) \otimes\left(t_{0} \circ \delta_{-1}\right)(a \otimes b) \\
& =\left(s_{0} \circ \partial_{-1}\right)(a) \otimes\left(t_{0} \circ \delta_{-1}\right)(b)=a \otimes b
\end{aligned}
$$

Thus $k_{0} \circ d_{-1}=i d$.

To show $d_{-1} \circ k_{0}+k_{1} \circ d_{0}=\operatorname{id}_{X_{0} \widehat{\otimes} Y_{0}}$, let $x_{0} \otimes y_{0} \in X_{0} \widehat{\otimes} Y_{0}$. Then

$$
\begin{aligned}
& \left(d_{-1} \circ k_{0}\right)\left(x_{0} \otimes y_{0}\right)=d_{-1}\left(s_{0} \otimes t_{0}\right)\left(x_{0} \otimes y_{0}\right) \\
& =\left(\partial_{-1} \otimes \delta_{-1}\right)\left(s_{0} x_{0} \otimes t_{0} y_{0}\right) \\
& =\left(\partial_{-1} \circ s_{0}\right)\left(x_{0}\right) \otimes\left(\delta_{-1} \circ t_{0}\right)\left(y_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(k_{1} \circ d_{0}\right)\left(x_{0} \otimes y_{0}\right)=k_{1}\left(d_{0}\left(x_{0} \otimes y_{0}\right)\right) \\
& =k_{1}\left(\partial_{0} x_{0} \otimes y_{0}+x_{0} \otimes \delta_{0} y_{0}\right) \\
& =k_{1}\left(\partial_{0} x_{0} \otimes y_{0}\right)+k_{1}\left(x_{0} \otimes \delta_{0} y_{0}\right) \\
& =\frac{1}{2}\left[\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes y_{0}+\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +\frac{1}{2}\left[x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}+\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] .
\end{aligned}
$$

Since $s_{1} \circ \partial_{0}+\partial_{-1} \circ s_{0}=i d$ and $\delta_{-1} \circ t_{0}+t_{1} \circ \delta_{0}=i d$, we have

$$
\begin{aligned}
& \left(d_{-1} \circ k_{0}+k_{1} \circ d_{0}\right)\left(x_{0} \otimes y_{0}\right) \\
& =\left(d_{-1} \circ k_{0}\right)\left(x_{0} \otimes y_{0}\right)+k_{1}\left(d_{0}\left(x_{0} \otimes y_{0}\right)\right) \\
& =\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0} \\
& +\frac{1}{2}\left[\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes y_{0}+\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +\frac{1}{2}\left[x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}+\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& =\frac{1}{2}\left[\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}+\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& +\frac{1}{2}\left[\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}+\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +\frac{1}{2}\left[\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes y_{0}+x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& =\frac{1}{2}\left[\left(\partial_{-1} \circ s_{0}\right) x_{0} \otimes y_{0}+x_{0} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +\frac{1}{2}\left[\left(s_{1} \circ \partial_{0}\right) x_{0} \otimes y_{0}+x_{0} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& =x_{0} \otimes y_{0} .
\end{aligned}
$$

This shows $d_{-1} \circ k_{0}+k_{1} \circ d_{0}=i d$.

Now, let $n \geq 1$. For $x_{n} \otimes y_{0} \in X_{n} \widehat{\otimes} Y_{0}$, we have

$$
\begin{aligned}
& \left(d_{n-1} \circ k_{n}\right)\left(x_{n} \otimes y_{0}\right)=\frac{1}{2} d_{n-1}\left[s_{n} x_{n} \otimes y_{0}+s_{n} x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& =\frac{1}{2}\left[\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes y_{0}+(-1)^{n-1} s_{n} x_{n} \otimes \delta_{0} y_{0}\right] \\
& +\frac{1}{2}\left[\begin{array}{l}
\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0} \\
+(-1)^{n-1} s_{n} x_{n} \otimes\left(\delta_{0} \circ \delta_{-1} \circ t_{0}\right) y_{0}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{l}
\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes y_{0}+(-1)^{n-1} s_{n} x_{n} \otimes \delta_{0} y_{0} \\
+\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}
\end{array}\right]
\end{aligned}
$$

and also

$$
\begin{aligned}
& \left(k_{n+1} \circ d_{n}\right)\left(x_{n} \otimes y_{0}\right)=k_{n+1}\left(\partial_{n} x_{n} \otimes y_{0}+(-1)^{n} x_{n} \otimes \delta_{0} y_{0}\right) \\
& =\frac{1}{2}\left[\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes y_{0}+\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +(-1)^{n} \frac{1}{2}\left[s_{n} x_{n} \otimes \delta_{0} y_{0}+(-1)^{n} x_{n} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left(d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}\right)\left(x_{n} \otimes y_{0}\right) \\
& =\frac{1}{2}\left[\begin{array}{l}
\left.\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes y_{0}+(-1)^{n-1} s_{n} x_{n} \otimes \delta_{0} y_{0}\right] \\
+\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}
\end{array}\right] \\
& +\frac{1}{2}\left[\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes y_{0}+\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}\right] \\
& +(-1)^{n} \frac{1}{2}\left[s_{n} x_{n} \otimes \delta_{0} y_{0}+(-1)^{n} x_{n} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& =\frac{1}{2}\left[\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes y_{0}+\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes y_{0}\right] \\
& +\frac{1}{2}\left[\begin{array}{l}
\left(\partial_{n-1} \circ s_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0} \\
+\left(s_{n+1} \circ \partial_{n}\right) x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}+x_{n} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}
\end{array}\right] \\
& =\frac{1}{2}\left[x_{n} \otimes y_{0}+x_{n} \otimes\left(\delta_{-1} \circ t_{0}\right) y_{0}+x_{n} \otimes\left(t_{1} \circ \delta_{0}\right) y_{0}\right] \\
& =\frac{1}{2}\left[x_{n} \otimes y_{0}+x_{n} \otimes y_{0}\right]=x_{n} \otimes y_{0} .
\end{aligned}
$$

This shows $\left(d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}\right)\left(x_{n} \otimes y_{0}\right)=x_{n} \otimes y_{0}$. Similarly, we can show that, for $x_{0} \otimes y_{n} \in X_{0} \widehat{\otimes} Y_{n}$,

$$
\left(d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}\right)\left(x_{0} \otimes y_{n}\right)=x_{0} \otimes y_{n} .
$$

Now we consider $x_{p} \otimes y_{q} \in X_{p} \widehat{\otimes} Y_{q}$ for $p, q \geq 1$ and $p+q=n$. Then

$$
\begin{aligned}
& \left(d_{n-1} \circ k_{n}\right)\left(x_{p} \otimes y_{q}\right)=\frac{1}{2} d_{n-1}\left[s_{p} x_{p} \otimes y_{q}+(-1)^{p} x_{p} \otimes t_{q} y_{q}\right] \\
& =\frac{1}{2}\left[\left(\partial_{p-1} \circ s_{p}\right) x_{p} \otimes y_{q}+(-1)^{p-1} s_{p} x_{p} \otimes \delta_{q} y_{q}\right] \\
& +\frac{1}{2}\left[(-1)^{p} \partial_{p} x_{p} \otimes t_{q} y_{q}+(-1)^{2 p} x_{p} \otimes\left(\delta_{q-1} \circ t_{q}\right) y_{q}\right]
\end{aligned}
$$

and also

$$
\begin{aligned}
& \left(k_{n+1} \circ d_{n}\right)\left(x_{p} \otimes y_{q}\right) \\
& =k_{n+1}\left(\partial_{p} x_{p} \otimes y_{q}+(-1)^{p} x_{p} \otimes \delta_{q} y_{q}\right) \\
& =\frac{1}{2}\left[\left(s_{p+1} \circ \partial_{p}\right) x_{p} \otimes y_{q}+(-1)^{p+1} \partial_{p} x_{p} \otimes t_{q} y_{q}\right] \\
& +\frac{1}{2}\left[(-1)^{p} s_{p} x_{p} \otimes \delta_{q} y_{q}+(-1)^{2 p} x_{p} \otimes\left(t_{q+1} \circ \delta_{q}\right) y_{q}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}\right)\left(x_{p} \otimes y_{q}\right) \\
& =\frac{1}{2}\left[\left(\partial_{p-1} \circ s_{p}\right) x_{p} \otimes y_{q}+(-1)^{p-1} s_{p} x_{p} \otimes \delta_{q} y_{q}\right] \\
& +\frac{1}{2}\left[(-1)^{p} \partial_{p} x_{p} \otimes t_{q} y_{q}+(-1)^{2 p} x_{p} \otimes\left(\delta_{q-1} \circ t_{q}\right) y_{q}\right] \\
& +\frac{1}{2}\left[\left(s_{p+1} \circ \partial_{p}\right) x_{p} \otimes y_{q}+(-1)^{p+1} \partial_{p} x_{p} \otimes t_{q} y_{q}\right] \\
& +\frac{1}{2}\left[(-1)^{p} s_{p} x_{p} \otimes \delta_{q} y_{q}+(-1)^{2 p} x_{p} \otimes\left(t_{q+1} \circ \delta_{q}\right) y_{q}\right] \\
& =\frac{1}{2}\left[\left(\partial_{p-1} \circ s_{p}\right) x_{p} \otimes y_{q}+\left(s_{p+1} \circ \partial_{p}\right) x_{p} \otimes y_{q}\right] \\
& +\frac{1}{2}\left[x_{p} \otimes\left(\delta_{q-1} \circ t_{q}\right) y_{q}+x_{p} \otimes\left(t_{q+1} \circ \delta_{q}\right) y_{q} q\right] \\
& =x_{p}+y_{q} .
\end{aligned}
$$

Thus $\left(d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}\right)\left(x_{p} \otimes y_{q}\right)=x_{p} \otimes y_{q}$.
By linear properties of d_{*} and k_{*}, we can conclude

$$
d_{n-1} \circ k_{n}+k_{n+1} \circ d_{n}=i d
$$

From now on, we denote the projective tensor products formed from the standard G - and K-resolutions by $(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{*}$. Thus, for every
$n \geq 0$

$$
(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n}=\bigoplus_{\substack{p+q=n+2 \\ 1 \leq p \leq n+1}} B^{p}(G) \widehat{\otimes} B^{q}(K) .
$$

Corollary 2.8. The sequence (2.8.1) below

$$
0 \longrightarrow \mathbb{R} \xrightarrow{d_{-1}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{0} \xrightarrow{d_{0}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{1} \xrightarrow{d_{1}} \cdots
$$

is a strong resolution of the trivial $G \times K$-module \mathbb{R}.
Proof. Recall that $\mathbb{R} \widehat{\otimes} \mathbb{R}=\mathbb{R}$.
From Theorem 1.8, the standard G-resolution

$$
0 \longrightarrow \mathbb{R} \underset{s_{0}}{\stackrel{\partial_{-1}}{\rightleftarrows}} B(G) \underset{s_{1}}{\stackrel{\partial_{0}}{\rightleftarrows}} B^{2}(G) \underset{s_{2}}{\stackrel{\partial_{1}}{\rightleftarrows}} B^{3}(G) \stackrel{\partial_{2}}{\stackrel{s_{3}}{\rightleftarrows}} \cdots
$$

and the standard K-resolution

$$
\left.0 \longrightarrow \mathbb{R} \underset{t_{0}}{\stackrel{\delta_{-1}}{\longleftrightarrow}} B(K) \underset{t_{1}}{\stackrel{\delta_{0}}{\longleftrightarrow}} B^{2}(K)\right) \underset{t_{2}}{\stackrel{\delta_{1}}{\longleftrightarrow}} B^{3}(K) \underset{t_{3}}{\stackrel{\delta_{2}}{\longleftrightarrow}} \cdots
$$

are strong, where the contracting homotopies $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are defined as the same formula in Theorem 1.8. Notice that, for $\alpha \in B(G)$ and $g \in G$,

$$
\left\|\left(\partial_{-1} \circ s_{0}\right)(\alpha)(g)\right\|=\left\|\partial_{-1}\left(\alpha\left(e_{G}\right)\right)(g)\right\|=\left\|\alpha\left(e_{G}\right)\right\| \leq\|\alpha\|
$$

Hence $\left\|\partial_{-1} \circ s_{0}\right\| \leq 1$. Similarly, we have $\left\|\delta_{-1} \circ t_{0}\right\| \leq 1$. Thus it follows from Theorem 2.7.

3. Bounded cohomology of product of groups

Now we consider bounded cohomology groups of product of groups.
Recall that the (external) direct product $G \times K$ is also a discrete group with the operation defined coordinatewise. Let M be a Banach space. Similar to $B(G, M)$, it is easy to see that the space $B(G \times K, M)$ of all bounded functions $f: G \times K \rightarrow M$ is a (bounded) $G \times K$-module with the action defined by

$$
((x, y) \cdot f)(a, b)=f(a x, b y) \quad \text { for }(x, y),(a, b) \in G \times K
$$

Again, \mathbb{R} forms a bounded $G \times K$-module with the trivial $G \times K$-action. For each $n>0$, we consider the Cartesian product $(G \times K)^{n}$. We denote by $B^{n}(G \times K)$ the set of all real -valued bounded functions f : $(G \times K)^{n} \rightarrow \mathbb{R}$, where

$$
\|f\|=\sup \left\{\left\|f\left(z_{1}, \cdots, z_{n}\right)\right\| \mid\left(z_{1}, \cdots, z_{n}\right) \in(G \times K)^{n}\right\}
$$

for $z_{i}=\left(x_{i}, y_{i}\right) \in G \times K$. It is clear that $B^{n}(G \times K)$ is a Banach space with the norm $\|\cdot\|$.

Observe that the Banach space $B^{n}(G \times K)$ have the similar properties of $B^{n}(G)$. We list some for our convenience.

Remark 3.1. Let n be a positive integer.
(1): $B^{n+1}(G \times K)$ is isomorphic to $B\left(G \times K, B^{n}(G \times K)\right)$.
(2): $B^{n}(G \times K)$ is a bounded $G \times K$-module with the following action: for $(x, y) \in G \times K$ and $\left(\left(a_{1}, b_{1}\right), \cdots,\left(a_{n-1}, b_{n-1}\right),\left(a_{n}, b_{n}\right)\right) \in(G \times$ $K)^{n}$

$$
\begin{aligned}
& ((x, y) \cdot f)\left(\left(a_{1}, b_{1}\right), \cdots,\left(a_{n-1}, b_{n-1}\right),\left(a_{n}, b_{n}\right)\right) \\
& =f\left(\left(a_{1}, b_{1}\right), \cdots,\left(a_{n-1}, b_{n-1}\right),\left(a_{n} x, b_{n} y\right)\right) .
\end{aligned}
$$

(3): $\left(B^{n+1}(G \times K)\right)^{G \times K}$ is isomorphic to $B^{n}(G \times K)$ for every $n>$ 0. In particular, $(B(G \times K))^{G \times K}$ is isomorphic to \mathbb{R}.

Corollary 3.2. Every $G \times K$-module $B^{n}(G \times K)$ for $n>0$ is relatively injective.

Proof. Let M be a Banach space. As $G \times K$ is a discrete group, a $G \times K$-module $B(G \times K, M)$ is a relatively injective by Proposition 1.5. Since $B^{n}(G \times K)$ is isomorphic to $B\left(G \times K, B^{n-1}(G \times K)\right)$ for every $n>0, B^{n}(G \times K)$ is also relatively injective.

Corollary 3.3. The sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{\widetilde{d}_{-1}} B(G \times K) \xrightarrow{\widetilde{d}_{0}} B^{2}(G \times K) \xrightarrow{\widetilde{d}_{1}} B^{3}(G \times K) \xrightarrow{{\widetilde{d_{2}}}_{2}} \cdots \tag{3.3.1}
\end{equation*}
$$

is a strong and relatively injective $G \times K$-resolution of the trivial $G \times K$ module \mathbb{R}, where the boundary operators \widetilde{d}_{*} is defined by the same formula as in (1.8.2).

Proof. Let $z_{i}=\left(x_{i}, y_{i}\right) \in G \times K$ and $e=\left(e_{G}, e_{K}\right)$ be the identity of $G \times K$. Notice that the boundary operators \widetilde{d}_{*} are defined by the same formulas in (1.8.2) as follows:

$$
\begin{aligned}
& \widetilde{d}_{-1}(r)(a, b)=r \\
& \widetilde{d}_{n}(f)\left(z_{0}, z_{1}, \ldots, z_{n}, z_{n+1}\right) \\
& =(-1)^{n+1} f\left(z_{1}, \ldots, z_{n+1}\right)+\sum_{i=0}^{n}(-1)^{n-i} f\left(z_{0}, \ldots, z_{i} z_{i+1}, \ldots, z_{n+1}\right) .
\end{aligned}
$$

Also, we define linear operators $t_{0}: B(G \times K) \rightarrow \mathbb{R}$ and $t_{n}: B^{n+1}(G \times$ $K) \rightarrow B^{n}(G \times K)$ for $n>0$ as follows:

$$
t_{0}(f)=f\left(e_{G}, e_{K}\right) \quad \text { and } \quad t_{n}(f)\left(z_{1}, \cdots, z_{n}\right)=f\left(z_{1}, \cdots, z_{n}, e\right)
$$

Then, it is easy to verify that the sequence (3.3.1) is a strong $G \times K$ resolution with contracting homotopy t_{*}. By Corollary 3.2, the sequence (3.3.1) is also relatively injective.

Notice that the sequence (3.3.1) is the standard $G \times K$-resolution. Hence the nth cohomology group of its induced complex
$0 \rightarrow(B(G \times K))^{G \times K} \xrightarrow{\widetilde{d}_{0}}\left(B^{2}(G \times K)\right)^{G \times K} \xrightarrow{\widetilde{d}_{1}}\left(B^{3}(G \times K)\right)^{G \times K} \xrightarrow{\widetilde{d}_{2}} \cdots$
is $\widehat{H}^{n}(G \times K)$. Recall that the complex (3.3.2) is equal to

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{\widetilde{d}_{0}} B(G \times K) \xrightarrow{\widetilde{d}_{1}} B^{2}(G \times K) \xrightarrow{\widetilde{d}_{2}} B^{3}(G \times K) \xrightarrow{\widetilde{d}_{3}} \cdots . \tag{3.3.3}
\end{equation*}
$$

Now we construct another relatively injective $G \times K$-module.
Theorem 3.4. Let U and V be Banach spaces. Then $B(G, U) \widehat{\otimes} B(K, V)$ is a relatively injective $G \times K$-module. Furthermore, every $G \times K$-module $(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n}$ for $n \geq 0$ is relatively injective.

Proof. By Proposition 2.5, $B(G, U) \widehat{\otimes} B(K, V)$ is a $(G \times K)$-module.
Using a similar idea in Proposition 1.5, we show a $(G \times K)$-module $B(G, U) \widehat{\otimes} B(K, V)$ is relatively injective. Let $\lambda: W_{1} \rightarrow W_{2}$ be any given strongly injective $G \times K$-morphism equipped with a bounded linear operator $\sigma: W_{2} \rightarrow W_{1}$ such that $\sigma \circ \lambda=i d$ and $\|\sigma\| \leq 1$. Also, let $\Phi: W_{1} \rightarrow B(G, U) \widehat{\otimes} B(K, V)$ be any given $G \times K$-morphism. For $\omega \in W_{1}$, notice that $\Phi(\omega)$ is represented by $\Phi(\omega)=\sum_{k=1}^{\infty} \alpha_{k} \otimes \beta_{k}$ for $\alpha_{k} \in B(G, U)$ and $\beta_{k} \in B(K, V)$. In this case, for $x \in G$ and $y \in K$,

$$
\Phi(\omega)(x, y)=\sum_{k=1}^{\infty} \alpha_{k}(x) \otimes \beta_{k}(y) .
$$

We consider the diagram illustrating the relatively injectivity

Let $\left(e_{G}, e_{K}\right)$ be the identity of $G \times K$.

For $w \in W_{2}$, we define $\Gamma: W_{2} \rightarrow B(G, U) \widehat{\otimes} B(K, V)$ by the formula

$$
\Gamma(w)(x, y)=\Phi(\sigma((x, y) \cdot w))\left(e_{G}, e_{K}\right) \quad \text { for } x \in G \text { and } y \in K
$$

First, we show that Γ is a $G \times K$-morphism. Let $w \in W_{2}$ and $(a, b) \in$ $G \times K$. Then for $x \in G$ and $y \in K$, we have

$$
\begin{aligned}
\Gamma((a, b) \cdot w)(x, y) & =\Phi(\sigma((x, y) \cdot((a, b) \cdot w)))\left(e_{G}, e_{K}\right) \\
& =\Phi(\sigma((x a, y b) \cdot w)))\left(e_{G}, e_{K}\right)=\Gamma(w)(x a, y b) \\
& =((a, b) \cdot \Gamma(w))(x, y)
\end{aligned}
$$

Thus $\Gamma((a, b) \cdot w)=(a, b) \cdot \Gamma(w)$ and so Γ is a $G \times K$-morphism.
Secondly, we show that $\Gamma \circ \lambda=\Phi$. Let $\omega \in W_{1}$. For $x \in X$ and $y \in Y$, we have

$$
\begin{aligned}
(\Gamma \circ \lambda)(\omega)(x, y) & =\Gamma(\lambda(\omega))(x, y)=\Phi(\sigma((x, y) \cdot \lambda(\omega)))\left(e_{G}, e_{K}\right) \\
& =\Phi(\sigma(\lambda((x, y) \cdot \omega)))\left(e_{G}, e_{K}\right)=\Phi((x, y) \cdot \omega)\left(e_{G}, e_{K}\right) \\
& =((x, y) \cdot \Phi)(\omega)\left(e_{G}, e_{K}\right)=\Phi(\omega)\left(e_{G} x, e_{K} y\right)=\Phi(\omega)(x, y)
\end{aligned}
$$

Finally, for $w \in W_{2}$, notice that

$$
\begin{aligned}
\|\Gamma(w)(x, y)\| & =\| \Phi(\sigma((x, y) \cdot w))\left(e_{G}, e_{K}\right) \\
& \leq\|\Phi\|\|\sigma\|\|(x, y) \cdot w\| \leq\|\Phi\|\|(x, y) \cdot w\| \leq\|\Phi\|\|w\|
\end{aligned}
$$

Thus $\|\Gamma\| \leq\|\Phi\|$ and also Γ is bounded. Hence $B(G, U) \widehat{\otimes} B(K, V)$ is a relatively injective $G \times K$-module.

By setting that $U=\mathbb{R}$ and $V=\mathbb{R}, B(G) \widehat{\otimes} B(K)$ is a relatively injective $G \times K$-module. Also, for each $p>0$ and $q>0$, the $G \times K$-module $B^{p}(G) \widehat{\otimes} B^{q}(K)$ is isomorphic to $B\left(G, B^{p-1}(G)\right) \widehat{\otimes} B\left(K, B^{q-1}(K)\right)$ and so is relatively injective. Recall that

$$
(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n}=\bigoplus_{\substack{p+q=n+2 \\ 1 \leq p \leq n+1}} B^{p}(G) \widehat{\otimes} B^{q}(K)
$$

By using projections π and injection ρ

$$
(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n} \xrightarrow{\pi} B^{p}(G) \widehat{\otimes} B^{q}(K) \xrightarrow{\rho}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n},
$$

it is easy to prove that its relatively injective property by the same method as the ordinary case shown in [5] that the direct product of injective modules is also injective.

Remark 3.5. From Remark 2.6, we have

$$
(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{0}^{G \times K}=(B(G) \widehat{\otimes} B(K))^{G \times K}=\mathbb{R} \widehat{\otimes} \mathbb{R}=\mathbb{R}
$$

and for $n \geq 1$

$$
\begin{aligned}
(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{n}^{G \times K} & =\left(\bigoplus_{\substack{p+q=n+2 \\
1 \leq p \leq n+1}} B^{p}(G) \widehat{\otimes} B^{q}(K)\right)^{G \times K} \\
& =\bigoplus_{\substack{p+q=n+2 \\
1 \leq p \leq n+1}} B^{p}(G)^{G} \widehat{\otimes} B^{q}(K)^{K} \\
& =\bigoplus_{\substack{p+q=n \\
0 \leq p \leq n}} B^{p}(G) \widehat{\otimes} B^{q}(K) \\
& =\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{n} .
\end{aligned}
$$

Theorem 3.6. The cohomology groups $H^{*}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$ are isomorphic to the bounded cohomology groups $\widehat{H}^{*}(G \times K)$ of $G \times K$, that is, there is an isomorphism of groups

$$
H^{*}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right) \cong \widehat{H}^{*}(G \times K)
$$

Proof. Recall that $\widehat{H}^{*}(G \times K)$ can be computed by the complex induced from the standard $G \times K$-resolution

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \xrightarrow{\widetilde{d}_{-1}} B(G \times K) \xrightarrow{\widetilde{d}_{0}} B^{2}(G \times K) \xrightarrow{\widetilde{d}_{1}} B^{3}(G \times K) \xrightarrow{\widetilde{d}_{2}} \cdots . \tag{3.3.1}
\end{equation*}
$$

Recall that, by Corollary 2.8 and Theorem 3.4, the sequence (2.8.1) below
$0 \longrightarrow \mathbb{R} \xrightarrow{d_{-1}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{0} \xrightarrow{d_{0}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{1} \xrightarrow{d_{1}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{2} \xrightarrow{d_{2}} \cdots$ is a strong and relatively injective $G \times K$-resolution of the trivial $G \times K$ module \mathbb{R}. It induces a complex

$$
\begin{equation*}
0 \longrightarrow \mathbb{R} \xrightarrow{d_{0}=0}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{1}^{G \times K} \xrightarrow{d_{1}}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))_{2}^{G \times K} \xrightarrow{d_{2}} \cdots \tag{3.6.1}
\end{equation*}
$$

and its nth cohomology is denoted by $H^{n}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))$.
Since all cohomology groups of the complexes induced from strong and relatively injective $G \times K$-resolutions of the trivial $G \times K$-module \mathbb{R} are canonically isomorphic by Proposition 1.11, the cohomology groups $H^{*}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))$ and $\widehat{H}^{*}(G \times K)$ are isomorphic. On the other hand, from Remark 2.4, the nth cohomology of the complex (2.4.3)

$$
\begin{equation*}
0 \longrightarrow \mathbb{R} \xrightarrow{d_{0}^{\prime}=0}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{1} \xrightarrow{d_{1}^{\prime}}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)_{2} \xrightarrow{d_{2}^{\prime}} \cdots \tag{2.4.3}
\end{equation*}
$$

is $H^{n}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$. Observe that the boundary operators d_{*}^{\prime} in (2.4.3) are equal to d_{*} in (3.6.1), which are defined by the same boundary operators of the standard G - and K-resolutions. Also, by Remark 3.5 , the complexes (3.6.1) and (2.4.3) are the same. So the cohomology groups $H^{*}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$ and $H^{*}(\mathbf{B}(G) \widehat{\otimes} \mathbf{B}(K))$ are also the same. Hence the cohomology groups $H^{*}\left(B^{*}(G) \widehat{\otimes} B^{*}(K)\right)$ and $\widehat{H}^{*}(G \times K)$ are isomorphic.

References

[1] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Marcel Dekker, Inc., 1979.
[2] N. Ivanov, Foundation of theory of bounded cohomology, Journal of Soviet Math., 37, 1987, 1090-1114.
[3] S. Mac Lane, Homology, 4th Printing, Springer, 1994.
[4] H. Park, The Kunneth Spectral sequence for complexes of Banach spaces, J. Korean Math. Soc. 55, No 4, 2018, 809-832
[5] J. Rotman, Introduction to Homological Algebra, Academic Press Inc., 1979.
[6] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, 2002.

HeeSook Park
Department of Mathematics Education, SunChon National University, Sunchon, 57922, Korea.
E-mail: hseapark@scnu.ac.kr

[^0]: Received February 25, 2019. Revised April 9, 2019. Accepted April 19, 2019.
 2010 Mathematics Subject Classification. 55N99, 18G25.
 Key words and phrases. bounded cohomology, tensor product, relatively injective.

