DOI QR코드

DOI QR Code

New evolution of cone-beam computed tomography in dentistry: Combining digital technologies

  • Jain, Supreet (Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute) ;
  • Choudhary, Kartik (Department of Pedodontics and Preventive Dentistry, Mansarovar Dental College) ;
  • Nagi, Ravleen (Department of Oral Medicine and Radiology, Swami Devi Dayal Hospital and Dental College) ;
  • Shukla, Stuti (Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute) ;
  • Kaur, Navneet (Department of Periodontology, National Dental College and Hospital) ;
  • Grover, Deepak (Department of Periodontology, National Dental College and Hospital)
  • Received : 2018.12.31
  • Accepted : 2019.05.08
  • Published : 2019.09.30

Abstract

Panoramic radiographs and computed tomography (CT) play a paramount role in the accurate diagnosis, treatment planning, and prognostic evaluation of various complex dental pathologies. The advent of cone-beam computed tomography (CBCT) has revolutionized the practice of dentistry, and this technique is now considered the gold standard for imaging the oral and maxillofacial area due to its numerous advantages, including reductions in exposure time, radiation dose, and cost in comparison to other imaging modalities. This review highlights the broad use of CBCT in the dentomaxillofacial region, and also focuses on future software advancements that can further optimize CBCT imaging.

Keywords

References

  1. White SC, Pharoah MJ. The evolution and application of dental maxillofacial imaging modalities. Dent Clin North Am 2008; 52: 689-705. https://doi.org/10.1016/j.cden.2008.05.006
  2. Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 2009; 30: 1088-95. https://doi.org/10.3174/ajnr.A1653
  3. American Academy of Oral and Maxillofacial Radiology. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116: 238-57. https://doi.org/10.1016/j.oooo.2013.06.002
  4. Jung YH, Liang H, Benson BW, Flint DJ, Cho BH. The assessment of impacted maxillary canine position with panoramic radiography and cone beam CT. Dentomaxillofac Radiol 2012; 41: 356-60. https://doi.org/10.1259/dmfr/14055036
  5. Akgul N, Caglayan F, Durna N, Sumbullu MA, Akgul HM, Durna D. Evaluation of enamel pearls by cone-beam computed tomography (CBCT). Med Oral Patol Oral Cir Bucal 2012; 17: e218-22.
  6. Villaca-Carvalho MF, Manhaes LR Jr, de Moraes ME, Lopes SL. Prevalence of bifid mandibular canals by cone beam computed tomography. Oral Maxillofac Surg 2016; 20: 289-94. https://doi.org/10.1007/s10006-016-0569-y
  7. Deeb G, Antonos L, Tack S, Carrico C, Laskin D, Deeb JG. Is cone-beam computed tomography always necessary for dental implant placement? J Oral Maxillofac Surg 2017; 75: 285-9. https://doi.org/10.1016/j.joms.2016.11.005
  8. Lo Giudice R, Nicita F, Puleio F, Alibrandi A, Cervino G, Lizio AS, et al. Accuracy of periapical radiography and CBCT in endodontic evaluation. Int J Dent 2018; 2018: 2514243. https://doi.org/10.1155/2018/2514243
  9. Shweel M, Amer MI, El-shamanhory AF. A comparative study of cone-beam CT and multidetector CT in the preoperative assessment of odontogenic cysts and tumors. Egypt J Radiol Nuclear Med 2013; 44: 23-32. https://doi.org/10.1016/j.ejrnm.2012.12.002
  10. Nah KS. Condylar bony changes in patients with temporomandibular disorders: a CBCT study. Imaging Sci Dent 2012; 42: 249-53. https://doi.org/10.5624/isd.2012.42.4.249
  11. Nunes LF, Santos KC, Junqueira JL, Oliveira JX. Prevalence of soft tissue calcifications in cone beam computed tomography images of the mandible. Rev Odonto Cienc 2011; 26: 297-303. https://doi.org/10.1590/S1980-65232011000400004
  12. Bertin H, Bonnet R, Delemazure AS, Mourrain-Langlois E, Mercier J, Corre P. Three-dimensional cone-beam CT sialography in non tumour salivary pathologies: procedure and results. Dentomaxillofac Radiol 2017; 46: 20150431. https://doi.org/10.1259/dmfr.20150431
  13. de Moraes ME, Hollender LG, Chen CS, Moraes LC, Balducci I. Evaluating craniofacial asymmetry with digital cephalometric images and cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2011; 139: e523-31. https://doi.org/10.1016/j.ajodo.2010.10.020
  14. Pinchi V, Pradella F, Buti J, Baldinotti C, Focardi M, Norelli GA. A new age estimation procedure based on the 3D CBCT study of the pulp cavity and hard tissues of the teeth for forensic purposes: a pilot study. J Forensic Leg Med 2015; 36: 150-7. https://doi.org/10.1016/j.jflm.2015.09.015
  15. Tyndall DA, Rathore S. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent Clin North Am 2008; 52: 825-41. https://doi.org/10.1016/j.cden.2008.05.002
  16. Tu MG, Huang HL, Hsue SS, Hsu JT, Chen SY, Jou MJ, et al. Detection of permanent three-rooted mandibular first molars by cone-beam computed tomography imaging in Taiwanese individuals. J Endod 2009; 35: 503-7. https://doi.org/10.1016/j.joen.2008.12.013
  17. Kottoor J, Velmurugan N, Sudha R, Hemamalathi S. Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography scanning: a case report. J Endod 2010; 36: 915-21. https://doi.org/10.1016/j.joen.2009.12.015
  18. La SH, Jung DH, Kim EC, Min KS. Identification of independent middle mesial canal in mandibular first molar using conebeam computed tomography imaging. J Endod 2010; 36: 542-5. https://doi.org/10.1016/j.joen.2009.11.008
  19. Lauber R, Bornstein MM, von Arx T. Cone beam computed tomography in mandibular molars referred for apical surgery. Schweiz Monatsschr Zahnmed 2012; 122: 12-24.
  20. Szabo BT, Pataky L, Mikusi R, Fejerdy P, Dobo-Nagy C. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system. Ann Ist Super Sanita 2012; 48: 49-52.
  21. Patel S. The use of cone beam computed tomography in the conservative management of dens invaginatus: a case report. Int Endod J 2010; 43: 707-13. https://doi.org/10.1111/j.1365-2591.2010.01734.x
  22. Young SM, Lee JT, Hodges RJ, Chang TL, Elashoff DA, White SC. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofac Radiol 2009; 38: 445-51. https://doi.org/10.1259/dmfr/88765582
  23. Wang P, Yan XB, Lui DG, Zhang WL, Zhang Y, Ma XC. Detection of dental root fractures by using cone-beam computed tomography. Dentomaxillofac Radiol 2011; 40: 290-8. https://doi.org/10.1259/dmfr/84907460
  24. Patel S, Dawood A, Wilson R, Horner K, Mannocci F. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography - an in vivo investigation. Int Endod J 2009; 42: 831-8. https://doi.org/10.1111/j.1365-2591.2009.01592.x
  25. Takita T, Tsurumachi T, Ogiso B. Endodontic treatment of a maxillary lateral incisor with a perforating internal resorption by using cone beam computed tomography as a diagnostic aid: a case report. Quintessence Int 2011; 42: 745-52.
  26. Oberoi S, Chigurupati R, Gill P, Hoffman WY, Vargervik K. Volumetric assessment of secondary alveolar bone grafting using cone beam computed tomography. Cleft Palate Craniofac J 2009; 46: 503-11. https://doi.org/10.1597/08-153.1
  27. Takane M, Sato S, Suzuki K, Fukuda T, Asano Y, Honda K, et al. Clinical application of cone beam computed tomography for ideal absorbable membrane placement in interproximal bone defects. J Oral Sci 2010; 52: 63-9. https://doi.org/10.2334/josnusd.52.63
  28. Umetsubo OS, Gaia BF, Costa FF, Cavalcanti MG. Detection of simulated incipient furcation involvement by CBCT: an in vitro study using pig mandibles. Braz Oral Res 2012; 26: 341-7. https://doi.org/10.1590/S1806-83242012000400010
  29. Peterson AG, Wang M, Gonzalez S, Covell DA Jr, Katancik J, Sehgal HS. An in vivo and cone beam computed tomography investigation of the accuracy in measuring alveolar bone height and detecting dehiscence and fenestration defects. Int J Oral Maxillofac Implants 2018; 33: 1296-304. https://doi.org/10.11607/jomi.6633
  30. Xu X, Xu L, Jiang JH, Wu JQ, Li XT, Jing WD. Accuracy analysis of alveolar dehiscence and fenestration of maxillary anterior teeth of angle class III by cone-beam CT. Beijing Da Xue Xue Bao Yi Xue Ban 2018; 50: 104-9.
  31. Leung CC, Palomo L, Griffith R, Hans MG. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 2010; 137 (4 Suppl):S109-19. https://doi.org/10.1016/j.ajodo.2009.07.013
  32. Angelopoulos C, Thomas SL, Hechler S, Parissis N, Hlavacek M. Comparison between digital panoramic radiography and cone-beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment. J Oral Maxillofac Surg 2008; 66: 2130-5. https://doi.org/10.1016/j.joms.2008.06.021
  33. Ghaeminia H, Meijer GJ, Soehardi A, Borstlap WA, Mulder J, Berge SJ. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiography. Int J Oral Maxillofac Surg 2009; 38: 964-71. https://doi.org/10.1016/j.ijom.2009.06.007
  34. Lee JS, Yoon SJ, Kang BC. Mandibular canal branches supplying the mandibular third molar observed on cone beam computed tomographic images: reports of four cases. Korean J Oral Maxillofac Radiol 2009; 39: 209-12.
  35. Lofthag-Hansen S, Grondahl K, Ekestubbe A. Cone-beam CT for preoperative implant planning in the posterior mandible: visibility of anatomic landmarks. Clin Implant Dent Relat Res 2009; 11: 246-55. https://doi.org/10.1111/j.1708-8208.2008.00114.x
  36. Spector L. Computer-aided dental implant planning. Dent Clin North Am 2008; 52: 761-75. https://doi.org/10.1016/j.cden.2008.05.004
  37. Loubele M, Maes F, Schutyser F, Marchal G, Jacobs R, Suetens P. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 225-34. https://doi.org/10.1016/j.tripleo.2005.10.039
  38. Ferreira MC, Garib DG, Cotrim-Ferreira F. Methodology standardization for measuring buccal and lingual alveolar bone plates using cone beam computed tomography. Dental Press J Orthod 2010; 15: 49-52.
  39. Bornstein MM, Balsiger R, Sendi P, von Arx T. Morphology of the nasopalatine canal and dental implant surgery: a radiographic analysis of 100 consecutive patients using limited cone-beam computed tomography. Clin Oral Implants Res 2011; 22: 295-301. https://doi.org/10.1111/j.1600-0501.2010.02010.x
  40. Jung J, Yim JH, Kwon YD, Al-Nawas B, Kim GT, Choi BJ, et al. A radiographic study of the position and prevalence of the maxillary arterial endosseous anastomosis using cone beam computed tomography. Int J Oral Maxillofac Implants 2011; 26: 1273-8.
  41. Kruse C, Spin-Neto R, Wenzel A, Kirkevang LL. Cone beam computed tomography and periapical lesions: a systematic review analysing studies on diagnostic efficacy by a hierarchical model. Int Endod J 2015; 48: 815-28. https://doi.org/10.1111/iej.12388
  42. Kruse C, Spin-Neto R, Reibel J, Wenzel A, Kirkevang LL. Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery. Dentomaxillofac Radiol 2017; 46: 20170210. https://doi.org/10.1259/dmfr.20170210
  43. Sogur E, Baksi BG, Grondahl HG, Lomcali G, Sen BH. Detectability of chemically induced periapical lesions by limited cone beam computed tomography, intra-oral digital and conventional film radiography. Dentomaxillofac Radiol 2009; 38: 458-64. https://doi.org/10.1259/dmfr/15206149
  44. Sirin Y, Guven K, Horasan S, Sencan S. Diagnostic accuracy of cone beam computed tomography and conventional multislice spiral tomography in sheep mandibular condyle fractures. Dentomaxillofac Radiol 2010; 39: 336-42. https://doi.org/10.1259/dmfr/29930707
  45. Yendreka VC, Fonseca GM. A “borderline” dental trauma with 12 y of evolution justifying CBCT as diagnostic method. Biomed Res 2018; 29: 2800-5.
  46. Ersan N, Ilguy M. Diagnosis of unusual mandibular split fracture with cone-beam computed tomography. J Oral Maxillofac Radiol 2015; 3: 67-9. https://doi.org/10.4103/2321-3841.157528
  47. Lewis EL, Dolwick MF, Abramowicz S, Reeder SL. Contemporary imaging of the temporomandibular joint. Dent Clin North Am 2008; 52: 875-90. https://doi.org/10.1016/j.cden.2008.06.001
  48. Librizzi ZT, Tadinada AS, Valiyaparambil JV, Lurie AG, Mallya SM. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofacial Orthop 2011; 140; e25-30. https://doi.org/10.1016/j.ajodo.2011.03.012
  49. Al-Saleh MA, Alsufyani NA, Lagravere M, Nebbe B, Lai H, Jaremko JL, et al. MRI alone versus MRI-CBCT registered images to evaluate temporomandibular joint internal derangement. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122: 638-45. https://doi.org/10.1016/j.oooo.2016.07.024
  50. Januario AL, Barriviera M, Duarte WR. Soft tissue cone-beam computed tomography: a novel method for measurement of gingival tissue and the dimensions of the dentogingival unit. J Esthet Restor Dent 2008; 20: 366-74. https://doi.org/10.1111/j.1708-8240.2008.00210.x
  51. Pette GA, Norkin FJ, Ganeles J, Hardigan P, Lask E, Zfaz S, et al. Incidental findings from a retrospective study of 318 cone beam computed tomography consultation reports. Int J Oral Maxillofac Implants 2012; 27: 595-603.
  52. Tward DJ, Siewerdsen JH, Daly MJ, Richard S, Moseley DJ, Jaffray DA, et al. Soft-tissue detectability in cone-beam CT: evaluation by 2AFC tests in relation to physical performance metrics. Med Phys 2007; 34: 4459-71. https://doi.org/10.1118/1.2790586
  53. Kabashima H, Mizobe K, Nakamuta H, Fujiwara H, Okamura K, Unemori M, et al. The usefulness of three-dimensional imaging in the diagnosis and treatment of clinically ambiguous gingival swelling. J Oral Sci 2011; 53: 257-61. https://doi.org/10.2334/josnusd.53.257
  54. Drage NA, Brown JE. Cone beam computed sialography of sialoliths. Dentomaxillofac Radiol 2009; 38: 301-5. https://doi.org/10.1259/dmfr/90784441
  55. Jadu FM, Hill ML, Yaffe MJ, Lam EW. Optimization of exposure parameters for cone beam computed tomography sialography. Dentomaxillofac Radiol 2011; 40: 362-8. https://doi.org/10.1259/dmfr/81159071
  56. Hechler SL. Cone-beam CT: applications in orthodontics. Dent Clin North Am 2008; 52: 809-23. https://doi.org/10.1016/j.cden.2008.05.001
  57. Merrett SJ, Drage NA, Durning P. Cone beam computed tomography: a useful tool in orthodontic diagnosis and treatment planning. J Orthod 2009; 36: 202-10. https://doi.org/10.1179/14653120723193
  58. Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int 2006; 159 Suppl 1: S78-83. https://doi.org/10.1016/j.forsciint.2006.02.031
  59. Hwang HS, Choe SY, Hwang JS, Moon DN, Hou Y, Lee WJ, et al. Reproducibility of facial soft tissue thickness measurements using cone-beam CT images according to the measurement methods. J Forensic Sci 2015; 60: 957-65. https://doi.org/10.1111/1556-4029.12766
  60. von See C, Bormann KH, Schumann P, Goetz F, Gellrich NC, Rucker M. Forensic imaging of projectiles using cone-beam computed tomography. Forensic Sci Int 2009; 190: 38-41. https://doi.org/10.1016/j.forsciint.2009.05.009
  61. Pauwels R, Jacobs R, Bosmans H, Schulze R. Future prospects for dental cone beam CT imaging. Imaging Med 2012; 4: 551-63. https://doi.org/10.2217/iim.12.45
  62. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT; state of the art. Dentomaxillofac Radiol 2015; 44: 20140224. https://doi.org/10.1259/dmfr.20140224
  63. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol 2019; 48: 20180218. https://doi.org/10.1259/dmfr.20180218
  64. Noel PB, Walczak AM, Xu J, Corso J, Hoffmann KR, Schafer S. GPU-based cone beam computed tomography. Comput Methods Programs Biomed 2009; 98: 271-7. https://doi.org/10.1016/j.cmpb.2009.08.006
  65. Ma L, Xu T, Lin J. Validation of a three-dimensional facial scanning system based on structured light techniques. Comput Methods Programs Biomed 2009; 94: 290-8. https://doi.org/10.1016/j.cmpb.2009.01.010
  66. Lata S, Mohanty SK, Vinay S, Das AC, Das S, Choudhury P. Is cone beam computed tomography (CBCT) a potential imaging tool in ENT practice? A cross-sectional survey among ENT surgeons in the State of Odisha, India. Indian J Otolaryngol Head Neck Surg 2018; 70: 130-6. https://doi.org/10.1007/s12070-017-1168-4
  67. Liu J, Cai W, Ning R. Evaluation of differential phase contrast cone beam CT imaging system. J Xray Sci Technol 2017; 25: 357-72.

Cited by

  1. 임플란트 가이드 수술시 고려사항 vol.28, pp.1, 2019, https://doi.org/10.15522/jkaed.2019.28.1.4
  2. Dentomaxillofacial CBCT: Clinical Challenges for Indication-oriented Imaging vol.24, pp.5, 2019, https://doi.org/10.1055/s-0040-1709428
  3. Dental students’ perceptions of case‐based learning method and the impact of clinical information in imaging diagnosis vol.24, pp.4, 2019, https://doi.org/10.1111/eje.12567
  4. The European Association for Sports Dentistry, Academy for Sports Dentistry, European College of Sports and Exercise Physicians consensus statement on sports dentistry integration in sports medicine vol.36, pp.6, 2019, https://doi.org/10.1111/edt.12593
  5. Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview vol.49, pp.8, 2020, https://doi.org/10.1259/dmfr.20200145
  6. Comparison of limited- and large-volume cone-beam computed tomography using a small voxel size for detecting isthmuses in mandibular molars vol.51, pp.1, 2021, https://doi.org/10.5624/isd.20200144
  7. Dental cone beam CT: An updated review vol.88, 2019, https://doi.org/10.1016/j.ejmp.2021.07.007
  8. Magnetic resonance imaging versus cone beam computed tomography in diagnosis of periapical pathosis - A systematic review vol.33, pp.8, 2021, https://doi.org/10.1016/j.sdentj.2021.09.010
  9. Computer-Guided Bone Biopsy: A Technical Note with the Description of a Clinical Case vol.8, pp.12, 2021, https://doi.org/10.3390/bioengineering8120214