DOI QR코드

DOI QR Code

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Lee, Seung Hwan (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • 투고 : 2018.07.24
  • 심사 : 2018.11.23
  • 발행 : 2019.09.30

초록

Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

키워드

참고문헌

  1. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011;92:407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  2. Al-Zboon K, Al-Harahsheh MS, Hani FB. Fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 2011;1883:414-421.
  3. Al-Zboon KK, Al-smadi BM, Al-Khawaldh S. Natural volcanic tuff-based geopolymer for Zn removal: Adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut. 2016;227:248. https://doi.org/10.1007/s11270-016-2937-5
  4. Hawari AH, Mulligan CN. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour. Technol. 2006;97:692-700. https://doi.org/10.1016/j.biortech.2005.03.033
  5. Tenorio JAS, Espinosa DCR. Treatment of chromium plating process effluents with ion exchange resins. Waste Manage. 2001;21:637-642. https://doi.org/10.1016/S0956-053X(00)00118-5
  6. Mohsen-Nia M, Montazeri P, Modarress H. Removal of $Cu^{2+}$ and $Ni^{2+}$ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007;217:276-281. https://doi.org/10.1016/j.desal.2006.01.043
  7. Schwarze M. Micellar-enhanced ultrafiltration (MEUF) - State of the art. Environ. Sci. Water Res. Technol. 2017;3:598-624. https://doi.org/10.1039/C6EW00324A
  8. Tucker EE. Micellar-enhanced ultrafiltration of chromate anion from aqueous streams. AIChE 1988;34:189-193. https://doi.org/10.1002/aic.690340203
  9. Mungray AA, Kulkarni SV, Mungray AK. Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: A review. Cent. Eur. J. Chem. 2012;10:27-46. https://doi.org/10.2478/s11532-011-0134-3
  10. Bade R, Lee SH. Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes for copper removal from wastewater. Korean J. Chem. Eng. 2007;24:239-245. https://doi.org/10.1007/s11814-007-5035-y
  11. Bade R, Lee SH, Jo S, Lee H, Lee S. Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination 2008;229:264-278. https://doi.org/10.1016/j.desal.2007.10.015
  12. Anthati VAK, Marathe KV. Selective separation of copper(II) and cobalt(II) from wastewater by using continuous cross-flow micellar-enhanced ultrafiltration and surfactant recovery from metal micellar solutions. Can. J. Chem. Eng. 2011;89:292-298. https://doi.org/10.1002/cjce.20380
  13. Schwarze M, GroB M, Moritz M, et al. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. J. Membr. Sci. 2015;478:140-147. https://doi.org/10.1016/j.memsci.2015.01.010
  14. Schwarze M, Chiappisi L, Prevost S, Gradzielski M. Oleylethoxycarboxylate - An efficient surfactant for copper extraction and surfactant recycling via micellar enhanced ultrafiltration. J. Colloid Interface Sci. 2014:421:184-190. https://doi.org/10.1016/j.jcis.2014.01.037
  15. Missel PJ, Mazer NA, Benedek GB, Young CY, Carey MC. Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles. J. Phys. Chem. 1980;84:1044-1057. https://doi.org/10.1021/j100446a021
  16. Mandal AB, Ray S, Biswas AM, Moulik SP. Physicochemical studies on the characterization of Triton X 100 micelles in an aqueous environment and in the presence of additives. J. Phys. Chem. 1980;84:856-859. https://doi.org/10.1021/j100445a012
  17. Moroi Y, Matuura R, Tanaka M, et al. Anionic surfactants with divalent counterions of separate electric charge. 2. Micellar size and surface activity. J. Phys. Chem. 1990;94:842-845. https://doi.org/10.1021/j100365a061
  18. Lipshutz BH, Petersen TB, Abela AR. Room-temperature Suzuki-Miyaura couplings in water facilitated by nonionic amphiphiles. Org. Lett. 2008;10:1333-1336. https://doi.org/10.1021/ol702714y
  19. Huang J, Liu L, Zeng G, et al. Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration. Desalination 2014;335:1-8. https://doi.org/10.1016/j.desal.2013.11.038
  20. Escadrille A, Niemen N. Ultrafiltration of cetyltrimethylammonium bromide solutions. J. Membr. Sci. 1997;133:1-13. https://doi.org/10.1016/S0376-7388(97)82815-3
  21. Jonsson A, Jonsson B, Byhlin H. A concentration polarization model for the ultrafiltration of nonionic surfactants. J. Colloid Interface Sci. 2006;304:191-199. https://doi.org/10.1016/j.jcis.2006.08.030
  22. Yang JS, Baek K, Yang JW. Crossflow ultrafiltration of surfactant solutions. Desalination 2005;184:385-394. https://doi.org/10.1016/j.desal.2005.03.051
  23. Urbanski R, Goralska E, Bart HJ, Szymanowski J. Ultrafiltration of surfactant solutions. J. Colloid Interface Sci. 2002;253:419-426. https://doi.org/10.1006/jcis.2002.8539
  24. Colloid JOF, No A. Ultrafiltration of micellar solutions in the presence of electrolytes. J. Colloid Interface Sci. 1996;183:484-490. https://doi.org/10.1006/jcis.1996.0571
  25. Xu K, Zeng G-m, Huang J-h, et al. Removal of $Cd^{2+}$ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surf. A Physicochem. Eng. Asp. 2007;294:140-146. https://doi.org/10.1016/j.colsurfa.2006.08.017
  26. Yurlova L, Kryvoruchko A, Kornilovich B. Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination 2002;144:255-260. https://doi.org/10.1016/S0011-9164(02)00321-1
  27. Schwarze M, Rost A, Weigel T, Schom R. Selection of systems for catalyst recovery by micellar enhanced ultrafiltration. Chem. Eng. Process. Process Intensification 2009;48:356-363. https://doi.org/10.1016/j.cep.2008.04.014
  28. Tanhaei B, Chenar MP, Saghatoleslami N, et al. Removal of nickel ions from aqueous solution by micellar-enhanced ultrafiltration, using mixed anionic-non-ionic surfactants. Sep. Purif. Technol. 2014;138:169-176. https://doi.org/10.1016/j.seppur.2014.10.018
  29. Tung C, Yang Y, Chang C, Maa J. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Manage. 2002;22:695-701. https://doi.org/10.1016/S0956-053X(02)00049-1
  30. Lee J, Yang JS, Kim HJ, Baek K, Yang JW. Simultaneous removal of organic and inorganic contaminants by micellar enhanced ultrafiltration with mixed surfactant. Desalination 2005;184:395-407. https://doi.org/10.1016/j.desal.2005.03.050
  31. Aoudia M, Allal N, Djennet A, Toumi L. Dynamic micellar enhanced ultrafiltration: Use of anionic (SDS)-nonionic (NPE) system to remove $Cr^{3+}$ at low surfactant concentration. J. Membr. Sci. 2003;217:181-192. https://doi.org/10.1016/S0376-7388(03)00128-5
  32. Fillipi BR, Brant LW, Scamehorn JF, Christian SD. Use of micellar-enhanced ultrafiltration at low surfactant concentrations and with anionic-nonionic surfactant mixtures. J. Colloid Interface Sci. 1999;213:68-80. https://doi.org/10.1006/jcis.1999.6092
  33. Ergican E, Gecol H, Fuchs A. The effect of co-occurring inorganic solutes on the removal of arsenic(V) from water using cationic surfactant micelles and an ultrafiltration membrane. Desalination 2005;181:9-26. https://doi.org/10.1016/j.desal.2005.02.011
  34. Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere 2007;66:970-976. https://doi.org/10.1016/j.chemosphere.2006.06.005
  35. Landaburu-aguirre J, Pongracz E, Peramaki P, Keiski RL. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater. 2010;180:524-534. https://doi.org/10.1016/j.jhazmat.2010.04.066
  36. Li C, Liu C, Yen W. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions. Chemosphere 2006;63:353-358. https://doi.org/10.1016/j.chemosphere.2005.07.017
  37. Zhao B, Li R, Zhong J, Zhang L. Micellar-enhanced ultrafiltration of copper ions using sodium dodecyl sulfate and its mixture with Brij 35, Tween 80 and Triton X-100. Water Sci. Technol. 2013;67:2154-2159. https://doi.org/10.2166/wst.2013.126
  38. Yenphan P, Chanachai A, Jiraratananon R. Experimental study on micellar-enhanced ultra fi ltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination 2010;253:30-37. https://doi.org/10.1016/j.desal.2009.11.040
  39. Beolchini F, Pagnanelli F, De Michelis I, Veglio F. Treatment of concentrated arsenic(V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J. Hazard. Mater. 2007;148:116-121. https://doi.org/10.1016/j.jhazmat.2007.02.031
  40. Gzara L, Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination 2001;137:241-250. https://doi.org/10.1016/S0011-9164(01)00225-9
  41. Son G, Lee S. Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution. Korean J. Chem. Eng. 2011;28:793-794. https://doi.org/10.1007/s11814-010-0427-9
  42. Xiarchos I, Jaworska A. Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration. J. Membr. Sci. 2008;321:222-231. https://doi.org/10.1016/j.memsci.2008.04.065
  43. Fillipi BR, Scamehorn JF, Taylor RW, Christian SD. Selective removal of copper from an aqueous solution using ligand-modified micellar-enhanced ultrafiltration using an alkyl-${\beta}$-diketone ligand. Sep. Sci. Technol. 1997;32:2401-2424. https://doi.org/10.1080/01496399708000777
  44. Liu CK, Li CW, Lin CY. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands. Chemosphere 2004;57:629-634. https://doi.org/10.1016/j.chemosphere.2004.06.035
  45. Dani U, Keskinler B. Chromate removal from wastewater using micellar enhanced crossflow filtration: Effect of transmembrane pressure and crossflow velocity. Desalination 2009;249:1356-1364. https://doi.org/10.1016/j.desal.2009.06.023
  46. Abbasi-Garravand E, Mulligan CN. Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Sep. Purif. Technol. 2014;132:505-512. https://doi.org/10.1016/j.seppur.2014.06.010
  47. Ghosh G, Bhattacharya PK. Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chem. Eng. J. 2006;119:45-53. https://doi.org/10.1016/j.cej.2006.02.014
  48. Rahmanian B, Pakizeh M, Maskooki A. Optimization of lead removal from aqueous solution by micellar-enhanced ultrafiltration process using Box-Behnken design. Korean J. Chem. Eng. 2012;29:804-805. https://doi.org/10.1007/s11814-011-0240-0
  49. Chhatre AJ, Marathe KV. Dynamic analysis and optimization of surfactant dosage in micellar enhanced ultrafiltration of nickel from aqueous streams. Sep. Sci. Technol. 2006;41:2755-2770. https://doi.org/10.1080/01496390600786002
  50. Danis U, Aydiner C. Investigation of process performance and fouling mechanisms in micellar-enhanced ultrafiltration of nickel-contaminated waters. J. Hazard. Mater. 2009;162:577-587. https://doi.org/10.1016/j.jhazmat.2008.05.098
  51. Landaburu-Aguirre J, Garcia V, Pongracz E, Keiski RL. The removal of zinc from synthetic wastewaters by micellar- enhanced ultrafiltration: Statistical design of experiments. Desalination 2009;240:262-269. https://doi.org/10.1016/j.desal.2007.11.077
  52. Lee SH, Shrestha S. International biodeterioration & biodegradation application of micellar enhanced ultra filtration (MEUF) process for zinc(II) removal in synthetic wastewater : Kinetics and two-parameter isotherm models. Int. Biodeterior. Biodegrad. 2014;95:241-250. https://doi.org/10.1016/j.ibiod.2014.03.016
  53. Zhang Z, Zeng G, Huang J, Fang Y, Xu K. Removal of zinc ions from aqueous solution using micellar- enhanced ultrafiltration at low surfactant concentrations. Afr. J. Online 2007;33:129136.
  54. Bunting JW, Thong KM. Stability constants for some 1:1 metal-carboxylate complexes. Can. J. Chem. 1970;48:1654-1656. https://doi.org/10.1139/v70-273
  55. Karate VD, Marathe KV. Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J. Hazard. Mater. 2008;157:464-471. https://doi.org/10.1016/j.jhazmat.2008.01.013
  56. Manchalwar SM, Anthati VA, Marathe KV. Simulation of micellar enhanced ultrafiltration by multiple solute model. J. Hazard. Mater. 2010;184:485-492. https://doi.org/10.1016/j.jhazmat.2010.08.060
  57. Channarong B, Lee SH, Bade R, Shipin OV. Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination 2010;262:221-227. https://doi.org/10.1016/j.desal.2010.06.016
  58. Scamehorn JF, Christian SD, El-Sayed DA, Uchiyama H, Younis SS. Removal of divalent metal cations and their mixtures from aqueous streams using micellar-enhanced ultrafiltration. Sep. Sci. Technol. 1994;29:809-830. https://doi.org/10.1080/01496399408006627
  59. Kim H, Baek K, Kim B, Shin H, Yang J. Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration. Korean J. Chem. Eng. 2008;25:253-258. https://doi.org/10.1007/s11814-008-0045-y
  60. Sohan S, Lee SH, Lee TK. Micellar enhanced ultrafiltration (MEUF): Activated carbon fiber (ACF) hybrid process using low surfactant concentration for zinc(II) removal from synthetic wastewater. Desalin. Water Treat. 2015;54:929-943. https://doi.org/10.1080/19443994.2014.912160
  61. Juang RS, Xu YY, Chen CL. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. J. Membr. Sci. 2003;218:257-267. https://doi.org/10.1016/S0376-7388(03)00183-2
  62. Ferella F, Prisciandaro M, De Michelis I, Veglio F. Removal of heavy metals by surfactant-enhanced ultrafiltration from wastewaters. Desalination 2007;207:125-133. https://doi.org/10.1016/j.desal.2006.07.007
  63. Nguyen LAT, Schwarze M, Schomacker R. Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. J. Membr. Sci. 2015;493:120-133. https://doi.org/10.1016/j.memsci.2015.06.026
  64. Bade R, Lee SH. A review of studies on micellar enhanced ultrafiltration for heavy metals removal from wastewater. J. Water Sustain. 2011;1:85-102.
  65. Baek K, Yang JW. Micellar-enhanced ultrafiltration of chromate and nitrate: Binding competition between chromate and nitrate. Desalination 2004;167:111-118. https://doi.org/10.1016/j.desal.2004.06.118
  66. Baek K, Yang JW. Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: Competitive binding. J. Hazard. Mater. 2004;108:119-123. https://doi.org/10.1016/j.jhazmat.2004.02.001
  67. Rafique RF, Lee S. Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution. Korean Chem. Eng. Res. 2014;52:775-780. https://doi.org/10.9713/kcer.2014.52.6.775
  68. Gecol H, Ergican E, Fuchs A. Molecular level separation of arsenic(V) from water using cationic surfactant micelles and ultrafiltration membrane. J. Membr. Sci. 2004;241:105-119. https://doi.org/10.1016/j.memsci.2004.04.026
  69. Rafique RF, Chowdhury ZZ, Moon J, Lee S. Application of micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of nickel from an aqueous solution. Int. J. Innov. Eng. Technol. 2018;10:112-120. https://doi.org/10.21817/ijet/2018/v10i1/181001012
  70. Purkait MK, DasGupta S, De S. Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J. Colloid Interface Sci. 2004;270:496-506. https://doi.org/10.1016/j.jcis.2003.10.030
  71. Mizoguchi K, Fukui K, Yanagishita H, Nakane T, Nakata T. Ultrafiltration behavior of a new type of non-ionic surfactant around the CMC. J. Membr. Sci. 2002;208:285-288. https://doi.org/10.1016/S0376-7388(02)00304-6
  72. Void MJ. Micellization process with emphasis on premicelles. Langmuir 1992;8:1082-1085. https://doi.org/10.1021/la00040a012
  73. Baek K, Kim BK, Yang JW. Application of micellar enhanced ultrafiltration for nutrients removal. Desalination 2003;156:137-144. https://doi.org/10.1016/S0011-9164(03)00336-9
  74. Goddard ED. Surfactants and interfacial phenomena: by Milton J. Rosen, 2nd ed. New York: John Wiley & Sons; 1989 (book review). Colloid. Surf. 1989;40:347. https://doi.org/10.1016/0166-6622(89)80030-7
  75. Akita S, Yang L, Takeuchi H. Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. J. Membr. Sci. 1997;133:189-194. https://doi.org/10.1016/S0376-7388(97)00103-8
  76. Liu CK, Li CW. Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar-enhanced ultrafiltration process. Desalination 2004;169:185-192. https://doi.org/10.1016/S0011-9164(04)00525-9
  77. Huang J-h, Zeng G-m, Qu Y-h, Zhang Z. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration. Trans. Nonferrous Met. Soc. China 2007;17:1112-1117. https://doi.org/10.1016/S1003-6326(07)60234-9
  78. Chaudhari RR, Marathe KV. Separation of dissolved phenolics from aqueous waste stream using micellar enhanced ultrafiltration. Sep. Sci. Technol. 2010;45:1033-1041. https://doi.org/10.1080/01496391003696970
  79. Trivunac K, Stevanovic S. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 2006;64:486-491. https://doi.org/10.1016/j.chemosphere.2005.11.073
  80. Zeng GM, Xu K, Huang JH, Li X, Fang YY, Qu YH. Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane. J. Membr. Sci. 2008;310:149-160. https://doi.org/10.1016/j.memsci.2007.10.046
  81. Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. 4th ed. John Wiley & Sons; 2012.
  82. Baek K, Yang JW. Effect of valences on removal of anionic pollutants using micellar-enhanced ultrafiltration. Desalination 2004;167:119-125. https://doi.org/10.1016/j.desal.2004.06.119
  83. Liu CK, Li CW. Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal. Sep. Purif. Technol. 2005;43:25-31. https://doi.org/10.1016/j.seppur.2004.09.010
  84. Kowalska I, Majewska-Nowak K, Kabsch-Korbutowicz M. Influence of temperature on anionic surface active agent removal from a water solution by ultrafiltration. Desalination 2006;198:124-131. https://doi.org/10.1016/j.desal.2006.01.022
  85. Purkait MK, DasGupta S, De S. Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J. Hazard. Mater. 2006;137:827-835. https://doi.org/10.1016/j.jhazmat.2006.03.003
  86. Bhat MA, Dar AA, Amin A, Rashid PI. Temperature dependence of transport and equilibrium properties of alkylpyridinium surfactants in aqueous solutions. J. Chem. Therm. 2007;39:1500-1507. https://doi.org/10.1016/j.jct.2007.02.011
  87. Zaghbani N, Hafiane A, Dhahbi M. Removal of Eriochrome Blue Black R from wastewater using micellar-enhanced ultrafiltration. J. Hazard. Mater. 2009;168:1417-1421. https://doi.org/10.1016/j.jhazmat.2009.03.044
  88. Rosen MJ. Surfactants and interfacial phenomena. Wiley & Sons; 2004.
  89. Gwicana S, Vorster N, Jacobs E. The use of a cationic surfactant for micellar-enhanced ultrafiltration of platinum group metal anions. Desalination 2006;199:504-506. https://doi.org/10.1016/j.desal.2006.03.192
  90. Canizares P, Perez A, Camarillo R, Llanos J, Lopez ML. Selective separation of Pb from hard water by a semi-continuous polymer-enhanced ultrafiltration process (PEUF). Desalination 2007;206:602-613. https://doi.org/10.1016/j.desal.2006.04.066
  91. Hankins N, Hilal N, Ogunbiyi OO, Azzopardi B. Inverted polarity micellar enhanced ultrafiltration for the treatment of heavy metal polluted wastewater. Desalination 2005;185:185-202. https://doi.org/10.1016/j.desal.2005.02.077
  92. Talens-alesson FI. Behaviour of SDS micelles bound to mixtures of divalent and trivalent cations during ultrafiltration. Colloids Surf. A Physicochem. Eng. Asp. 2007;299:169-179. https://doi.org/10.1016/j.colsurfa.2006.11.033
  93. Vieira M, Tavares CR, Bergamasco R, Petrus JCC. Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater. J. Membr. Sci. 2001;194:273-276. https://doi.org/10.1016/S0376-7388(01)00525-7
  94. Biver T, Paoletti C, Secco F, Venturini M. Extraction, separation and recovery of palladium and platinum by a kinetic method combined with ultrafiltration. Colloids Surf. A Physicochem. Eng. Asp. 2014;441:466-473. https://doi.org/10.1016/j.colsurfa.2013.09.035
  95. Bautista-toledo I. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on $O_3$ and $O_3$ / $H_2O_2$. Water Res. 2006;40:1717-1725. https://doi.org/10.1016/j.watres.2006.02.015
  96. Basar CA, Aydiner C, Kara S, Keskinler B. Removal of $CrO_4$ anions from waters using surfactant enhanced hybrid PAC/MF process. Sep. Purif. Technol. 2006;48:270-280. https://doi.org/10.1016/j.seppur.2005.07.033
  97. Landdaburu-Aguirre J. Micellar-enhanced ultrafiltration for the removal of heavy metals from phosphorous-rich wastewaters : From end-of-pipe to clean technology [dissertation]. Oulu: Univ. of Oulu; 2012.
  98. Puasa SW, Ruzitah MS, Sharifah ASAK. An overview of micellar-enhanced ultrafiltration in wastewater treatment process. In: Proceedings of International Conference on Environment and Industrial Innovation (ICEII 2011), 2011.

피인용 문헌

  1. Experimental and neural network modeling of micellar enhanced ultrafiltration for arsenic removal from aqueous solution vol.26, pp.1, 2019, https://doi.org/10.4491/eer.2019.261
  2. Possibility of Removal of Heavy Metals from Waters of Different Origin Using Ferro(VI) Ion on a Ni Example vol.43, pp.3, 2019, https://doi.org/10.3103/s1063455x21030139
  3. Prediction of heavy metals removal by polymer inclusion membranes using machine learning techniques vol.35, pp.3, 2021, https://doi.org/10.1111/wej.12699
  4. Las cuencas hidrográficas y los relaves mineros vol.9, pp.2, 2019, https://doi.org/10.36610/j.jsab.2021.090200067
  5. Watersheds and mining tailings vol.9, pp.2, 2019, https://doi.org/10.36610/j.jsab.2021.090200067x
  6. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review vol.204, pp.no.pa, 2022, https://doi.org/10.1016/j.envres.2021.111916