DOI QR코드

DOI QR Code

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian (Faculty of Sciences, The Autonomous University of San Luis Potosi (UASLP)) ;
  • Araujo-Martinez, Rene Fernando (Faculty of Sciences, The Autonomous University of San Luis Potosi (UASLP)) ;
  • Martinez-Castanon, Gabriel Alejandro (Faculty of Sciences, The Autonomous University of San Luis Potosi (UASLP)) ;
  • Morales-Sanchez, J. Elpidio (Faculty of Sciences, The Autonomous University of San Luis Potosi (UASLP)) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Hurtado-Macias, Abel (Research Center for Advanced Materials (CIMAV)) ;
  • Ruiz, Facundo (Faculty of Sciences, The Autonomous University of San Luis Potosi (UASLP))
  • 투고 : 2018.09.06
  • 심사 : 2018.11.02
  • 발행 : 2019.09.30

초록

Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.

키워드

참고문헌

  1. Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014;267:194-205. https://doi.org/10.1016/j.jhazmat.2013.12.062
  2. Stefaniuk M, Oleszczuk P, Ok YS. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016;287:618-632. https://doi.org/10.1016/j.cej.2015.11.046
  3. Suslick KS, Fang M, Hyeon T. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 1996;118:11960-11961. https://doi.org/10.1021/ja961807n
  4. Farrell D, Majetich SA, Wilcoxon JP. Preparation and characterization of monodisperse Fe nanoparticles. J. Phys. Chem. B. 2003;107:11022-11030. https://doi.org/10.1021/jp0351831
  5. Huber DL, Venturini EL, Martin JE, Provencio PP, Patel RJ. Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a ${\beta}$-diketone surfactant. J. Magn. Magn. Mater. 2004;278:311-316. https://doi.org/10.1016/j.jmmm.2003.12.1317
  6. Khalil H, Mahajan D, Rafailovich M, Gelfer M, Pandya K. Synthesis of zerovalent nanophase metal particles stabilized with poly(ethylene glycol). Langmuir 2004;20:6896-6903. https://doi.org/10.1021/la0497402
  7. Sun Y, Li X, Cao J, Zhang W, Wang HP. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006;120:47-56. https://doi.org/10.1016/j.cis.2006.03.001
  8. Azzam AM, El-Wakeel S, Mostafa BB, El-Shahat M. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. 2016;4: 2196-2206. https://doi.org/10.1016/j.jece.2016.03.048
  9. Hwang Y, Lee Y, Mines PD, Huh YS, Andersen HR. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination. Appl. Catal. B-Environ. 2014;147:748-755. https://doi.org/10.1016/j.apcatb.2013.10.017
  10. Kanel SR, Manning B, Charlet L, Choi H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005;39:1291-1298. https://doi.org/10.1021/es048991u
  11. Liu A, Liu J, Han J, Zhang W. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J. Hazard. Mater. 2017;322:129-135. https://doi.org/10.1016/j.jhazmat.2015.12.070
  12. Lee N, Choi K, Uthuppu B, et al. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction. Adv. Environ. Res. 2014;3:107-116. https://doi.org/10.12989/aer.2014.3.2.107
  13. Sun Y, Li X, Zhang W, Wang HP. A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A. Physicochem. Eng. Asp. 2007;308:60-66. https://doi.org/10.1016/j.colsurfa.2007.05.029
  14. He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 2005;39:3314-3320. https://doi.org/10.1021/es048743y
  15. Ruiz-Torres CA, Araujo-Martinez RF, Martinez-Castanon GA, et al. Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition. Chem. Eng. J. 2018;336:112-122. https://doi.org/10.1016/j.cej.2017.11.047
  16. Wang Q, Snyder S, Kim J, Choi H. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environ. Sci. Technol. 2009;43:3292-3299. https://doi.org/10.1021/es803540b
  17. Lowry GV, Johnson KM. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 2004;38: 5208-5216. https://doi.org/10.1021/es049835q
  18. Ambika S, Nambi IM. Optimized synthesis of methanol-assisted nZVI for assessing reactivity by systematic chemical speciation approach at neutral and alkaline conditions. J. Water Process Eng. 2016;13:107-116. https://doi.org/10.1016/j.jwpe.2016.08.011
  19. Pan D, Ji X, An L, Lu Y. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008;20:3560-3566. https://doi.org/10.1021/cm7023718
  20. Brillo J, Pommrich AI, Meyer A. Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys. Rev. Lett. 2011;107:165902. https://doi.org/10.1103/PhysRevLett.107.165902
  21. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007;41:284-290. https://doi.org/10.1021/es061349a
  22. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005;39:1338-1345. https://doi.org/10.1021/es049195r
  23. Hwang Y, Salatas A, Mines PD, Jakobsen MH, Andersen HR. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials. Appl. Catal. B-Environ. 2016;181:314-320. https://doi.org/10.1016/j.apcatb.2015.07.041
  24. Drago RS, Hart DM, Carlson RL. Spectrophotometric studies of iron(III) chloride in nonaqueous solvents. J. Am. Chem. Soc. 1965;87:1900-1904. https://doi.org/10.1021/ja01087a012
  25. Dinc M, Metin O, Ozkar S. Water soluble polymer stabilized iron(0) nanoclusters: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal. Today 2012;183:10-16. https://doi.org/10.1016/j.cattod.2011.05.007
  26. Kurata M, Yamakawa H, Teramoto E. Theory of dilute polymer solution. I. Excluded volume effect. J. Chem. Phys. 1958;28:785-792. https://doi.org/10.1063/1.1744272
  27. Wertz DL, Kruh RF. Structure of iron(III) chloride-methanol solutions. J. Chem. Phys. 1969;50:4013-4018. https://doi.org/10.1063/1.1671661
  28. Zhang N, Shen Z, Chen C, He G, Hao C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J. Mol. Liq. 2015;203:90-97. https://doi.org/10.1016/j.molliq.2014.12.047
  29. Rice S, Chan C, Brown S, et al. Particle size distributions by transmission electron microscopy: An interlaboratory comparison case study. Metrologia 2013;50:663. https://doi.org/10.1088/0026-1394/50/6/663
  30. Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Roy. Soc. A. 2010;368:1333-1383. https://doi.org/10.1098/rsta.2009.0273
  31. Chen S, Zhang Y, Han W, Wellburn D, Liang J, Liu C. Synthesis and magnetic properties of $Fe_2O_3$-$TiO_2$ nano-composite particles using pulsed laser gas phase evaporation-liquid phase collecting method. Appl. Surf. Sci. 2013;283:422-429. https://doi.org/10.1016/j.apsusc.2013.06.125

피인용 문헌

  1. Stimulating effect of magnesium hydroxide on aqueous characteristics of iron nanocomposites vol.80, pp.10, 2019, https://doi.org/10.2166/wst.2020.027
  2. Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges vol.319, 2019, https://doi.org/10.1016/j.jclepro.2021.128641