DOI QR코드

DOI QR Code

메탄 배출 저감을 위한 설탕을 이용한 돈 슬러리의 산성화

Acidification of Pig Slurry with Sugar for Reducing Methane Emission during Storage

  • 임성원 (인하대학교 사회인프라공학과) ;
  • 오세은 (한밭대학교 건설환경공학과) ;
  • 홍두기 ((주)성지환경건설) ;
  • 김동훈 (인하대학교 사회인프라공학과)
  • Im, Seongwon (Department of Civil Engineering, Inha University) ;
  • Oh, Sae-Eun (Department of Civil and Environmental Engineering, Hanbat University) ;
  • Hong, Do-giy (Seongji Environment Company) ;
  • Kim, Dong-Hoon (Department of Civil Engineering, Inha University)
  • 투고 : 2019.09.06
  • 심사 : 2019.09.17
  • 발행 : 2019.09.30

초록

돈 슬러리(Pig slurry, PS)가 저장되는 동안 상당량의 온실가스가 배출되고 있으며 메탄($CH_4$)이 주요 온실가스로 알려져 있다. 메탄 배출을 줄이기 위해서 진한 황산을 이용하여 돈 슬러리의 pH를 5.0-6.0까지 낮춰서 저장하는 방법이 사용되고 있다. 하지만 부식성이 있고, 사람과 동물에 위험하다는 단점이 있어 사용에 한계가 있다. 본 연구에서는 돈 슬러리가 저장되는 동안 배출하는 메탄을 줄이기 위해 친환경적 방법인 설탕 첨가를 시험해보고자 한다. 설탕을 이용한 돈 슬러리의 산성화 이후, 돈 슬러리의 pH는 7.1에서 설탕의 첨가량(10, 20, 30, 40, 50 g/L)에 따라 $5.8{\pm}0.1$, $4.6{\pm}0.1$, $4.4{\pm}0.1$, $4.1{\pm}0.1$, $4.0{\pm}0.1$으로 감소하였다. 주요 유기산으로는 lactate, acetate, propionate가 검출되었으며 20 g/L 이상의 농도에서는 lactate의 비중이 전체 유기산의 42-72%(COD 기준)까지 증가하였다. 대조군을 41일 동안 저장하는 동안 $20.6{\pm}2.3kg\;CO_2\;eq./ton\;PS$가 배출되었으며 10, 20 g/L에서만 메탄이 검출되었다. 특히, 10 g/L에서는 30일 이전까지는 소량의 메탄이 배출되었으나 그 이후부터는 메탄 배출량이 증가하여 $8.7{\pm}0.4kg\;CO_2\;eq./ton\;PS$(대조군의 40%)까지 도달하였다. 이러한 현상의 원인은 돈 슬러리의 pH 상승(pH 7.0)으로 인한 메탄생성균의 활성도 회복으로 판단된다. 저장 후 돈 슬러리 내 유기물 제거율은 VS 24%, COD 27%로 나타났지만 산성화를 할 경우 유기물 손실(VS 15-4%, COD 12-17%)을 크게 낮출 수 있음 보였으며 저장하는 동안 감소한 COD의 90% 이상이 호기 분해에 의해 일어난 것으로 보인다.

The major problem encountered during the storage of pig slurry (PS) is the release of huge amounts of greenhouse gases (GHGs), which are dominated by methane ($CH_4$). To reduce this, concentrated sulfuric acid has been used as an additive to control the pH of pig slurry to 5.0-6.0. However, other low-risk substitutes have been developed due to some limitations to its use, such as corrosiveness, and hazards to animal and human health. In this study, sugar addition was proposed as an eco-friendly approach for limiting $CH_4$ emission from PS during storage. The pH of PS has been reduced from $7.1{\pm}0.1$ (control) to $5.8{\pm}0.1$, $4.6{\pm}0.1$, $4.4{\pm}0.1$, $4.1{\pm}0.1$, and $4.0{\pm}0.1$, by the addition of 10, 20, 30, 40, and 50 g sugar/L, respectively. Lactate, acetate, and propionate were detected as the dominant organic acids and at sugar concentration above 20 g/L, lactate concentration represented 42-72% (COD basis) of total organic acids. For 40 d of storage, $20.6{\pm}2.3kg\;CO_2\;eq./ton\;PS$ was emitted in the control. Such emission, however, was found to be reduced to $8.7{\pm}0.4$ and $0.4{\pm}0.1kg\;CO_2\;eq./ton\;PS$ at 10 and 20 g/L, respectively. Small amount of $CH_4$ from PS at 10 g/L was emitted until 30 d of storage, while for rest of storage period, it has increased to $8.7{\pm}0.4kg\;CO_2\;eq./ton\;PS$ ( 40% of the control) when methanogens have recovered by increasing pH to 7.0. By the end of storage, VS and COD removal in the control reached 24% and 27%, while their ranges reached 15-4% and 12-17% in the sugar added experiments, respectively. It was found that more than 90% of COD removal was done by aerobic biological process.

키워드

참고문헌

  1. Kim, M., Yang, S.-H., Oh, Y. K. and Pack, K.-H., "Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990-2013", Journal of Climate Change Research, 7(4), pp. 383-390. (2016). https://doi.org/10.15531/ksccr.2016.7.4.383
  2. Park, W.-K., Kim, G.-Y., Lee, S.-I. and Lee, S.-H., "Investigating multi-attributes for GHGs mitigation technology in agricultural sectors : Applying the analytic hierarchy process", Korean Journal of Agricultural Management and Policy, 42(3), pp. 616-629. (2015).
  3. Park, W.-K., Jun, H.-B., Park, N.-B. and Hong, S.-G., "Solubilization characteristic of piggery slurry by different storage type and temperature conditions", Korean J. Envrion. Agric., 29, pp. 348-353. (2010). https://doi.org/10.5338/KJEA.2010.29.4.348
  4. Ogejo, J. A., "Poultry and livestock manure storage: Management and safety", VCE publication., 442, pp. 1-6. (2016).
  5. IPCC., Climate change 2013 : The physical science basis. (2013).
  6. Amon, B., Amon, T., Boxberger, J. and Alt, C., "Emissions of $NH_3$, $N_2O$ and $CH_4$ from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading)", Nutr. Cycl. Agroecosys., 60(103), pp. 103-113. (2001). https://doi.org/10.1023/A:1012649028772
  7. Shin, S. R., Im, S., Mostafa, A., Lee, M. K., Yun, Y. M., Oh, S. E. and Kim, D. H., "Effects of pig slurry acidification on methane emissions during storage and subsequent biogas production", Water Res., 152(1), pp. 234-240. (2019). https://doi.org/10.1016/j.watres.2019.01.005
  8. Eriksen, J., Sorensen, P. and Elsgaard, L., "The fate of sulfate in acidified pig slurry during storage and following application to cropped soil", J. Environ. Qual., 37(1), pp. 280-286. (2008). https://doi.org/10.2134/jeq2007.0317
  9. Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D., and Aguirre-Villegas, H., "Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application", Agric. Ecosyst. Environ., 239(15), pp. 410-419. (2017). https://doi.org/10.1016/j.agee.2017.02.007
  10. Kai, P., Pedersen, P., Jensen, J. E., Hansen, M. N. and Sommer, S. G., "A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions,", Eur. J. Agron., 28(2), pp. 148-154. (2008). https://doi.org/10.1016/j.eja.2007.06.004
  11. Lay, J. J., Li, Y. Y. and Noike, T., "Influences of pH and moisture content on the methane production in high-solids sludge digestion", Water Res., 31(6), pp. 1518-1524. (1997). https://doi.org/10.1016/S0043-1354(96)00413-7
  12. Berg, W., Turk, M. and Hellebrand, H. J., "Effects of Acidifying Liquid Cattle Manure with Nitric or Lactic Acid on Gaseous Emissions", Workshop on Agricultural Air Quality, pp. 492-498. (2006).
  13. Petersen, S. O., Andersen, A. J. and Eriksen, J., "Effect of cattle slurry acidification on ammonia and methane evolution during storage", J. Environ. Qual., 41(1), pp. 88-94. (2012). https://doi.org/10.2134/jeq2011.0184
  14. Dai, X. R. and Blanes-Vidal, V., "Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration", J. Environ. Manage., 115, pp. 147-154. (2013). https://doi.org/10.1016/j.jenvman.2012.11.019
  15. Regueiro, I., Coutinho, J. and Fangueiro, D., "Alternatives to sulfuric acid for slurry acidification: impact on slurry composition and ammonia emissions during storage", J. Clean. Prod. 131, pp. 296-307. (2016). https://doi.org/10.1016/j.jclepro.2016.05.032
  16. Clemens, J., Bergmann, S. and Vandre, T., "Reduced ammonia emissions from slurry after self-acidification with organic supplements", Environ. Technol., 23(4), pp. 429-435. (2002). https://doi.org/10.1080/09593332508618400
  17. Piveteau, S., Picard, S., Dabert, P. and Daumer, M.-L., "Dissolution of particulate phosphorus in pig slurry through biological acidification: A critical step for maximum phosphorus recovery as struvite", Water Res., 124(1), pp. 693-701. (2017). https://doi.org/10.1016/j.watres.2017.08.017
  18. APHA(American Public Health Association), Standard Methods for the Examination of Water and Wastewater, 17th ed., Washington DC, USA. (1989).
  19. Fangueiro, D., Hjorth, M. and Gioelli, F., "Acidification of animal slurry- a review", J. Environ. Manage., 149(1), pp. 46-56. (2015). https://doi.org/10.1016/j.jenvman.2014.10.001
  20. Moon, C., Jang, S., Yun, Y.-M., Lee, M.-K., Kim, D.-H., Kang, W.-S., Kwak, S.-S. and Kim, M.-S., "Effect of the accuracy of pH control on hydrogen fermentation", Bioresource Technol., 179, pp. 595-601. (2015). https://doi.org/10.1016/j.biortech.2014.10.128
  21. Habtewold, J., Gordon, R., Sokolov, V., VanderZaag, A., Wagner-Riddle, C. and Dunfield, K., "Reduction in Methane Emissions From Acidified Dairy Slurry Is Related to Inhibition of Methanosarcina Species", Front Microbiol., 21, 2806. (2018).
  22. Baral, K. R., Jego, G., Amon, B., Bol, R., Chantigny, M. H., Olesen, J. E. and Petersen, S.O., "Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation", Agr. Syst., 166, pp. 26-35. (2018). https://doi.org/10.1016/j.agsy.2018.07.009