DOI QR코드

DOI QR Code

Power Allocation to Improve Data-Rate Fairness of Non-orthogonal Multiple Access Users

비직교 다중접속 사용자의 데이터 전송률 공정성 개선을 위한 전력 할당 기법

  • Lee, In-Ho (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • Received : 2019.06.07
  • Accepted : 2019.06.14
  • Published : 2019.09.30

Abstract

In this paper, a power allocation scheme is proposed to improve the fairness of user data rates in downlink non-orthogonal multiple access systems with one base station and two users. In particular, the power allocation scheme is presented to maximize the fairness of average user data rates assuming independent Rayleigh fading channels, where the fairness maximization is achieved when the average user data rates are equal. For the fairness evaluation, hence approximate expressions for the average user data rates and the average sum date rate of the proposed scheme are provided by using high signal-to-noise ratio approximation. Through simulation investigation, the derived approximate expressions for the average data rates are verified, and it is shown that the proposed scheme is superior to the conventional power allocation schemes in terms of the fairness of the average user data rates.

본 논문에서는 하나의 기지국과 두 사용자를 갖는 하향링크 비직교 다중접속 시스템에서 사용자 데이터 전송률의 공정성을 개선하기 위한 전력 할당 기법을 제안한다. 특히, 독립적인 레일레이 채널을 가정하여 평균 사용자 데이터 전송률의 공정성을 극대화하는 전력 할당 기법을 제안한다. 여기서, 공정성의 극대화는 사용자의 평균 데이터 전송률이 동일할 때 얻어진다. 따라서 공정성 평가를 위하여 평균 사용자 데이터 전송률과 총 평균 데이터 전송률의 근사식을 제시한다. 시뮬레이션 결과 분석을 통하여 유도한 평균 데이터 전송률의 근사식을 검증하고, 기존의 전력 할당기법들과 평균 사용자 데이터 전송률 결과를 비교하여 제안하는 기법이 공정성 측면에서 우수함을 보인다.

Keywords

References

  1. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, "On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users," IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501-1505, Dec. 2014. https://doi.org/10.1109/LSP.2014.2343971
  2. I.-H. Lee, "Symbol error rate analysis for fixed multi-user superposition transmission in Rayleigh fading channels," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 10, pp. 1379-1385, Oct. 2018. https://doi.org/10.6109/JKIICE.2018.22.10.1379
  3. J.-B. Kim and I.-H. Lee, "Capacity analysis of cooperative relaying systems using non-orthogonal multiple access," IEEE Communications Letters, vol. 19, no. 11, pp. 1949-1952, Nov. 2015. https://doi.org/10.1109/LCOMM.2015.2472414
  4. Z. Yang, Z. Ding, Y. Wu, and P. Fan, "Novel relay selection strategies for cooperative NOMA," IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10114-10123, Nov. 2017. https://doi.org/10.1109/TVT.2017.2752264
  5. C. Zhong and Z. Zhang, "Non-orthogonal multiple access with cooperative full-duplex relaying," IEEE Communications Letters, vol. 20, no. 12, pp. 2478-2481, Dec. 2016. https://doi.org/10.1109/LCOMM.2016.2611500
  6. Y. Liu, Z. Ding, M. Elkashlan, and J. Yuan, "Nonorthogonal multiple access in large-scale underlay cognitive radio networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 10152-10157, Dec. 2016. https://doi.org/10.1109/TVT.2016.2524694
  7. Y. Yu, H. Chen, Y. Li, Z. Ding, L. Song, and B. Vucetic, "Antenna selection for MIMO non-orthogonal multiple access systems," IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3158-3171, Apr. 2018. https://doi.org/10.1109/TVT.2017.2777540
  8. S. Timotheou and I. Krikidis, "Fairness for non-orthogonal multiple access in 5G systems," IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1647-1651, Oct. 2015. https://doi.org/10.1109/LSP.2015.2417119
  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. New York, Academic Press, 2007.