DOI QR코드

DOI QR Code

Minimum Histogram for Given Turn Sequences

주어진 회전 수열에 대한 최소 히스토그램

  • Kim, Jae-hoon (Division of Computer Software, Busan University of Foreign Studies)
  • Received : 2019.05.27
  • Accepted : 2019.07.12
  • Published : 2019.09.30

Abstract

Histogram H is an x-monotone rectilinear polygon with a horizontal edge, called by a base, connecting the leftmost vertical edge and the rightmost vertical edge. Here the rectilinear polygon is a polygon with only horizontal and vertical edges and the x- monotone polygon P is a polygon in which every line orthogonal to the x-axis intersects P at most twice. Walking counterclockwise on the boundary of a histogram H yields a sequence of left turns and right turns at its vertices. Conversely, a given sequence of the turns at the vertices can be realized by a histogram. In this paper, we consider the problem of finding a histogram to realize a given turn sequence. Particularly, we will find the histograms to minimize its area and its bounding box. It will be shown that both of the problems can be solved by linear time algorithms.

히스토그램 H는 가장 왼쪽 수직 에지와 가장 오른쪽 수직 에지를 연결하는 기저라고 불리는 하나의 수평 에지를 가진 x-단조 직교 다각형이다. 여기서 직교 다각형은 수평과 수직 에지들만을 가진 다각형이고, x-단조 다각형 P는 x-축에 수직인 모든 직선이 P와 많아야 두 번 교차하는 성질을 만족하는 다각형이다. 히스토그램 H의 테두리 선을 따라 반시계방향으로 움직이면, 꼭짓점에서 왼쪽 회전과 오른쪽 회전의 수열을 얻는다. 역으로, 꼭짓점에서의 회전들로 이루어진 수열이 히스토그램에 의해서 구현될 수 있다. 이 논문에서 우리는 주어진 회전 수열을 구현하는 히스토그램을 찾는 문제를 다룬다. 특별히 면적을 최소화하는 히스토그램과 구속 상자를 최소화하는 히스토그램을 찾을 것이다. 두 문제 모두 선형 시간 알고리즘들에 의해 풀리는 것을 보일 것이다.

Keywords

References

  1. T. Blasius, I. Rutter, and D. Wagner, "Optimal orthogonal graph drawing with convex bend costs," ACM Transactions on Algorithms, vol. 12, pp. 1-32, March 2016.
  2. W. Didimo, G. Liotta, and M. Patrignani, "Bend minimum orthogonal drawings in quadratic time," in Proceedings of the 26h International Symposium on Graph Drawing and Network Visualization, pp. 481-494, 2018.
  3. H. A. Akitaya, M. Loffler, and I. Parada, "How to fit a tree in a box," in Proceedings of the 26h International Symposium on Graph Drawing and Network Visualization, pp. 361-367, 2018.
  4. T. Biedl, "Ideal drawings of rooted trees with approximately optimal width," Journal of Graph Algorithms and Applications, vol. 21, pp. 631-648, March 2017. https://doi.org/10.7155/jgaa.00432
  5. M. Patrignanil, "On the complexity of orthogonal compaction," Computational Geometry, vol. 19, pp. 47-67, June 2001. https://doi.org/10.1016/S0925-7721(01)00010-4
  6. S. W. Bae, Y. Okamoto, and C. S. Shin, "Area bounds of rectilinear polygons realized by angle sequences," in Proceedings of the 23rd International Symposium on Algorithms and Computation, pp. 629-638, 2012.
  7. D. Z. Chen and H. Wang, "An improved algorithm for reconstructing a simple polygon from its visibility angles," Computational Geometry, vol. 45, pp. 254-257, July 2012. https://doi.org/10.1016/j.comgeo.2012.01.005
  8. T. C. Biedl, S. Durocher, and J. Snoeyink, "Reconstructing polygons from scanner data," Theoretical Computer Science, vol. 412, pp. 4161-4172, July 2011. https://doi.org/10.1016/j.tcs.2010.10.026
  9. W. S. Evans, K. Fleszer, P. Kindermann, N. Saeedi, C. S. Shin, and A. Wolf, "Minimum rectilinear polygons for given angle sequences," in Proceedings of the 18th Japan Conference on Discrete and Computational Geometry, Graphs, and Games, pp. 105-119, 2015.