DOI QR코드

DOI QR Code

Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model

GIS기반 InVEST모형을 이용한 네팔 Bagmati유역의 물생산량 산정

  • Bastola, Shiksha (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Seong, Yeon Jeong (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Lee, Sang Hyup (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Jung, Younghun (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University)
  • Received : 2019.06.03
  • Accepted : 2019.09.11
  • Published : 2019.09.30

Abstract

Among various ecosystem services provided by the basin, this study deals with water yield (WY) estimation in the Bagmati basin of Nepal. Maps of where water used for different facilities like water supply, irrigation, hydropower etc. are generated helps planning and management of facilities. These maps also help to avoid unintended impacts on provision and production of services. Several studies have focused on the provision of ecosystem services (ES) on the basin. Most of the studies have are primarily focused on carbon storage and drinking water supply. Meanwhile, none of the studies has specifically highlighted water yield distribution on sub-basin scale and as per land use types in the Bagmati basin of Nepal. Thus, this study was originated with an aim to compute the total WY of the basin along with computation on a sub-basin scale and to study the WY capacity of different landuse types of the basin. For the study, InVEST water yield model, a popular model for ecosystem service assessment based on Budyko hydrological method is used along with ArcGIS. The result shows water yield per hectare is highest on sub-basin 5 ($15216.32m^3/ha$) and lowest on sub-basin 6 ($10847.15m^3/ha$). Likewise, built-up landuse has highest WY capacity followed by grassland and agricultural area. The sub-basin wise and LULC specific WY estimations are expected to provide scenarios for development of interrelated services on local scales. Also, these estimations are expected to promote sustainable land use policies and interrelated water management services.

본 연구는 유역에서 제공하는 다양한 생태서비스 가운데 네팔의 Bagmati 유역의 물생산량(Water yield)을 산정하였다. 물 공급, 관개 수력 등 다양한 시설에 사용되는 물생산량 지도는 계획 및 관리에 도움이 되며 생태서비스의 공급과 생산에 의도하지 않은 부정적 영향을 줄일 수 있다. 여러 문헌들은 네팔 Bagmati유역에 대한 탄소저장과 식수공급과 같은 생태서비스 제공 연구에 중점을 두었으나 토양피복별 혹은 소유역별 물 생산량에 대한 연구는 매우 미흡했다. 따라서 본 연구에서는 네팔 바그 마티 유역에서 소유역 규모와 함께 유역의 총 물생산량을 계산하고 유역의 토지피복 유형별로 물생산량을 산정하기 위해 시작되었다. 이를 위해, 생태서비스 평가를 위해 가장 많이 사용되는 Budyko 수문학적 방법에 바탕을 둔 ArcGIS기반 InVEST Water Yield 모형이 사용되었다. 본 연구로부터의 결과는 단위면적(ha)e당 물 생산량이 소유역 5 ($15216.32m^3/ha$)에서 가장 높았으며 소유역 6 ($10847.15m^3/ha$)에서 가장 낮았다. 토지피복별 물생산량은 도시화지역에서 가장 높게 산정되었으며, 초원과 농경지가 도시화지역 다음으로 높게 산정되었다. 본 연구에서 산정된 소유역별, 토지피복별 물생산량은 지역 규모의 상호 관련 서비스 개발을 위한 효율적인 시나리오를 제공하고 지속 가능한 토지 이용 정책 및 상호 관련된 물 관리 서비스를 촉진시킬 것으로 기대한다.

Keywords

References

  1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
  2. Arnold, J. G., and Fohrer, N. (2005). "SWAT2000. Current capabilities and research opportunities in applied watershed modeling." Hydrological Process, Vol. 19, No. 3, pp. 563-572. https://doi.org/10.1002/hyp.5611
  3. Arnold, J. G., Srinivasin, R. Muttiah, R. S., and Williams, J. R. (1998). "Large area hydrologic modeling and assessment. part I. Model development." Journal of American Water Resources Association, Vol. 34, No. 1, pp.73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  4. Chen, S. X., Xie, L., and Zhang, J. C. (2008). "Root system distribution characteristics of main vegetation types in Anji County of Zhejiang Provence." Subtropical Soil and Water Conservation. Vol. 20, pp. 1-4.
  5. Cudennec, C., Leduc, C., and Koutsoyiannis, D. (2007). "Dryland hydrological in Mediterranean regions-a review." Hydrological Sciences Journal, Vol. 52, No. 6, pp. 1077-1087. https://doi.org/10.1623/hysj.52.6.1077
  6. Daily, G. C. (1997). Nature's services. societal dependence on natural ecosystems. Island Press, Washington, D.C.
  7. Davids, J. C., Rutten, M. M., Shah, R. D. T., Devkota, N., Izebound, P., Pandey, A., and Giesen, N. (2018). "Quantifying the connectionsinkages between land-use and water in the Kathmandu Valley, Nepal." Environmental Monitoring and Assessment. Vol. 190, No. 5 Article: 304.
  8. De Groot, R. S., Wilson, M. A., and Boumans, R. M. (2002). "A typology for the classification, description and valuation of ecosystem functions, goods and services." Ecological Economics, Vol. 41, No. 3, pp. 393-408. https://doi.org/10.1016/S0921-8009(02)00089-7
  9. DeFries, R., and Eshleman, N. K. (2004). "Land-use change and hydrologic processes. A major focus for the future." Hydrological Processes, Vol. 18, No. 11, pp. 2183-2186. https://doi.org/10.1002/hyp.5584
  10. Donohue, R. J., Roderick, M. L., and McVicar, T. R. (2012). "Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko's hydrological model." Journal of Hydrology, Vol. 436, pp. 35-50. https://doi.org/10.1016/j.jhydrol.2012.02.033
  11. Ebrahimi, Kh., Feiznia, S., Jannat Rostami, M., and Ausati, Kh. (2011). "Assessing temporal and spatial variations of groundwater quality (A case study. Kohpayeh-Segzi)." Journal of Rangeland Science, Vol. 1, No. 3, pp. 193-202.
  12. Ennaanay, D. (2006). Impacts of land use changes on the hydrologic regime in the Minnesota river basin. Ph. D. Thesis, Graduate School, University of Minnesota.
  13. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P.K. (2005). "Global consequences of land use." Science, Vol. 309, No. 5734, pp. 570-574. https://doi.org/10.1126/science.1111772
  14. Fu, B. P. (1981). "On the calculation of the evaporation from land surface (in Chinese)." Chinese Journal of Atmospheric Sciences, Vol. 5, pp. 23-31.
  15. Hargreaves, G. H., and Samani, Z. A. (1985). "Reference crop evapotranspiration from temperature." Applied Engineering in Agriculture, Vol. 1, No. 2, pp. 96-99. https://doi.org/10.13031/2013.26773
  16. ICIMOD (2018). Regional database system, accessed 15 December 2018, < http://rds.icimod.org/Home/DataDetail?metadataId=9224>.
  17. ISRIC Data Hub (2017), Soil and Terrain Database (SOTER) for Nepal, accessed 12 November 2017, .
  18. Leavesley, G. H., Lichty, R. W., and Troutman, B. M. (1983). Precipitation runoff modeling system-User's manual. U.S. Geological Survey Water-Resources Investigations Report, pp. 83-4238.
  19. Li, S., Yang, H., Martin, L., Liu, J., and Lei, G. (2018). "Impacts of land-use and land-cover changes on water yield: a case study in Jing-Jin-Ji, China." Sustainability, Vol 10, No. 4, p. 960. https://doi.org/10.3390/su10040960
  20. Liu, Y., Zhang, X., Xia, D. Z., You, J., Rong, Y., and Bakir, M. (2013). "Impacts of land-use and climate changes on hydrologic processes in the Qingyi river watershed, China." Journal of Hydrological Engineering, Vol. 18, No.11, pp. 1495-1512. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000485
  21. Millennium Ecosystem Assessment (MA), (2005). Ecosystems and human wellbeing. Synthesis. Island Press, Washington, D.C.
  22. NatCap Project (2018). Stanford University, accessed 10 December 2018, .
  23. Pokhrel, B. K. (2018). "Impact of land use change on flow and sediment yields in the khokana outlet of the Bagmati river, Kathmandu, Nepal." Hydrology, Vol. 5, No. 2, p. 22. https://doi.org/10.3390/hydrology5020022
  24. Sanchez-Canales, M., Lopez Benito, A., Passuello, A., Terrado, M., Ziv, G., Acuna, V., Schuhmacher, M., and Elorza, F. J. (2012). "Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed." Science of the Total Environment, Vol. 440, pp. 140-153. https://doi.org/10.1016/j.scitotenv.2012.07.071
  25. Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D., and Douglass, J. (2018). InVEST 3.6.0 User's Guide. The Natural Capital Project, Stanford, CA, USA.
  26. Vigerstol K. L., and Aukema J. E. (2011). "A comparison of tools for modeling freshwater ecosystem services." Journal of Environmental Management, Vol. 92, No. 10, pp. 2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040
  27. Villa, F., Ceroni, M., Bagstad, K., and Johnson, G., Krivov, S. (2009). "ARIES (ARtificial Intelligence for Ecosystem Services). A new tool for ecosystem services assessment, planning, and valuation." 11th International BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity. Venice, Italy, http.//www.ucl.ac.uk/ bioecon/11th_2009/Villa.pdf.
  28. Wei, X. X., and Zhang, M. F., (2010). "Quantifying streamflow change caused by forest disturbance at a large spatial scale. A single watershed study." Water Resources Research, Vol. 46. No. 12.
  29. Woldesenbet, T. A., Elagib, N. A., Ribbe, L., and Heinrich, J. (2017). "Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia." Science of The Total Environment, Vol. 575, pp. 724-741. https://doi.org/10.1016/j.scitotenv.2016.09.124
  30. World Commission on Dams (2000). Dams and development. A new framework for decision-making. The Report of the World Commission on Dams. Earthscan Publications LTD, London.
  31. Yang, C. G., Yu, Z. B., Hao, Z. C., Lin, Z. H., and Wang, H. (2013). "Effects of vegetation cover on hydrological processes in a large region. Huaihe river basin, China." Journal of Hydrological Engineering. Vol. 18, No. 11, pp. 1477-1483. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000440
  32. Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P.R. (2004). "A rational function approach for estimating mean annual evapotranspiration." Water Resources Research. Vol. 40, No. 2.
  33. Zhao, G. J., Mu, X. M., Jiao, J. Y., An, Z. F., Klik, A., Wang, F., Jiao, F., Yue, X., Gao, P., and Sun, W. (2016). "Evidence and causes of spatiotemporal changes in runoff and sediment yield on the Chinese Loess plateau." Land Degradation and Development, Vol. 28, No. 2, pp. 579-590. https://doi.org/10.1002/ldr.2534