ON THE GENERALIZED BANACH SPACES

Buhyeon Kang

Abstract

For any non-negative real number ϵ_{0}, we shall introduce a concept of the ϵ_{0}-Cauchy sequence in a normed linear space V and also introduce a concept of the ϵ_{0}-completeness in those spaces. Finally we introduce a concept of the generalized Banach spaces with these concepts.

1. Introduction

In this section, we briefly introduce the concept of the generalized limits of the multi-valued sequences and functions on the normed spaces which we need later. Let's denote by $B(x, \epsilon)$ (resp. $\bar{B}(x, \epsilon)$) the open (resp. closed) ball in the normed linear space V with radius ϵ and center at x.

Definition 1.1. Let $\left\{x_{n}\right\}$ be a multi-valued infinite sequence of elements of the normed linear space $(V,\|\cdot\|)$. And let $\epsilon_{0} \geq 0$ be a fixed non-negative real number. If a subset S of V satisfies the following condition, we call that the ϵ_{0} generalized limit (or ϵ_{0}-limit) of $\left\{x_{n}\right\}$ as n goes to ∞ is S, and we denote it by $\frac{\epsilon_{0}-\lim }{n \rightarrow \infty} x_{n}=S: S$ is the set of all the vectors $\alpha \in V$ satisfying the condition

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t. }(\forall n \in N) n \geq K,\left(\forall x_{n}\right) \Rightarrow\left\|x_{n}-\alpha\right\|<\epsilon .
$$

[^0]If the set S in the definition above is not empty we say that $\left\{x_{n}\right\}$ is an ϵ_{0}-convergent sequence or ϵ_{0}-converges to S. We also define that any member $\alpha \in S$ is an approximate value of the generalized limit of $\left\{x_{n}\right\}$ with the limit of the error ϵ_{0}. Then we can regard $\alpha \in S$ as the approximate value of the limit of $\left\{x_{n}\right\}$ whether $\left\{x_{n}\right\}$ converges in the usual sense or not. From now on, $V \neq\{0\}$ denotes a normed linear space.

Definition 1.2. Let $\left\{x_{n}\right\}$ be a multi-valued infinite sequence in V. We define that $\left\{x_{n}\right\}$ is ultimately bounded if and only if there exist real numbers K and M such that $(\forall n \in N) n \geq K, \forall x_{n} \Rightarrow\left\|x_{n}\right\| \leq M$.

Lemma 1.3. (Representation) Let $\left\{x_{n}\right\}$ be a multi-valued infinite sequence in the normed linear space $V \neq\{0\}$ which satisfies the HeineBorel property. And let $\epsilon_{0} \geq 0$ be a non-negative real number. Suppose that $\left\{x_{n}\right\}$ is ultimately bounded. If $\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}=S$ then S is a convex and compact subset of V such that $S=\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Here

$$
S S L=S S L\left(\left\{x_{n}\right\}\right)=\left\{\alpha \in V \mid \exists\left\{x_{n_{k}}\right\} \leq\left\{x_{n}\right\} \text { s.t. } \lim _{k \rightarrow \infty} x_{n_{k}}=\alpha\right\}
$$

and $\left\{x_{n_{k}}\right\} \leq\left\{x_{n}\right\}$ means that $\left\{x_{n_{k}}\right\}$ is a single-valued subsequence of $\left\{x_{n}\right\}$.

Proof. (\subseteq) Let any element $\beta \in S \neq \emptyset$ be given. Then
$\forall \epsilon>\epsilon_{0}, \exists K_{1} \in N$ s.t. $(\forall n \in N) n \geq K_{1},\left(\forall x_{n}\right) \Rightarrow\left\|x_{n}-\beta\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}$.
If $\alpha \in S S L$ is any element, then there exists a single-valued and convergent subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$. Thus we have

$$
\forall \epsilon>\epsilon_{0}, \exists K_{2} \in N \text { s.t. }(\forall k \in N) k \geq K_{2} \Rightarrow\left\|x_{n_{k}}-\alpha\right\|<\frac{\epsilon-\epsilon_{0}}{2} .
$$

Choosing a natural number $K=\max \left\{K_{1}, K_{2}\right\}$, we have

$$
\begin{aligned}
\|\beta-\alpha\| & =\left\|\beta-x_{n_{K}}+x_{n_{K}}-\alpha\right\| \\
& \leq\left\|\beta-x_{n_{K}}\right\|+\left\|x_{n_{K}}-\alpha\right\| \\
& <\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}+\frac{\epsilon-\epsilon_{0}}{2}=\epsilon .
\end{aligned}
$$

Since $\epsilon>\epsilon_{0}$ was arbitrary, we have $\|\beta-\alpha\| \leq \epsilon_{0}$. That is, $\beta \in \bar{B}\left(\alpha, \epsilon_{0}\right)$. Since $\alpha \in S S L$ was arbitrary, we have $\beta \in \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Since $\beta \in S$
was also arbitrary, we have $S \subseteq \cap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. (ొ) Since $V \neq\{0\}$, $S \neq V$ since $\left\{x_{n}\right\}$ is ultimately bounded. In order to show that the opposite inclusion is also satisfied, let $\beta \notin S$ be any element of $V-S \neq \emptyset$. Then we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. }\left(\forall k \in N, \exists n_{k} \in N, \exists x_{n_{k}} \text { s.t. }\left\|x_{n_{k}}-\beta\right\| \geq \epsilon_{1}\right) .
$$

Since $\left\{x_{n}\right\}$ is ultimately bounded, $\left\{x_{n_{k}}\right\}$ is a bounded sequence in V. Thus $\left\{x_{n_{k}}: k \in N\right\}$ is a subset of some closed bounded ball $\bar{B}(x, r)$ for some $x \in V$ and $r>0$. Since V satisfies the Heine-Borel property, the closed ball $\bar{B}(x, r)$ is a compact subset of V. Since $\left\{x_{n_{k}}\right\}$ is a sequence in the compact set $\bar{B}(x, r)$, there is a convergent subsequence $\left\{x_{n_{k_{p}}}\right\}$ of $\left\{x_{n_{k}}\right\}$. Hence we may assume that $\lim _{p \rightarrow \infty} x_{n_{k_{p}}}=\alpha_{0}$ for some $\alpha_{0} \in V$. Then we have, for such an $\epsilon_{1}>\epsilon_{0}$,

$$
\exists K \in N \text { s.t. } p \geq K \Rightarrow\left\|x_{n_{k_{p}}}-\alpha_{0}\right\|<\frac{\epsilon_{1}-\epsilon_{0}}{2} \text {. }
$$

Therefore, we have

$$
\begin{aligned}
\left\|\beta-\alpha_{0}\right\| & =\left\|\beta-x_{n_{k_{K}}}+x_{n_{k_{K}}}-\alpha_{0}\right\| \\
& \geq\left\|\beta-x_{n_{k_{K}}}\right\|-\left\|x_{n_{k_{K}}}-\alpha_{0}\right\| \\
& >\epsilon_{1}-\frac{\epsilon_{1}-\epsilon_{0}}{2}=\frac{\epsilon_{1}+\epsilon_{0}}{2} .
\end{aligned}
$$

Since the last quantity satisfies the relation $\frac{\epsilon_{1}+\epsilon_{0}}{2}>\epsilon_{0}$, this implies that $\beta \notin \bar{B}\left(\alpha_{0}, \epsilon_{0}\right)$. Since $\alpha_{0} \in S S L$, this also implies that $\beta \notin \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Hence $\underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right) \subseteq S$. Consequently, we have $S=\bigcap_{\alpha \in S S L}^{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right)$. On the other hand, since S is the intersection of the closed balls $\bar{B}\left(\alpha, \epsilon_{0}\right)$ which are bounded, closed and convex, S is convex and compact in V. Finally, if $S=\emptyset$ then S is clearly convex and compact, and $\underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right) \subseteq$ $S=\emptyset$.

Note in the lemma above that if $S S L=\{a\}$ for some $a \in V$ then we have $\underset{n \rightarrow \infty}{\epsilon_{0}-\lim } x_{n}=\bar{B}\left(a, \epsilon_{0}\right)$ for all $\epsilon_{0} \geq 0$.

Lemma 1.4. Let $\left\{x_{n}\right\}$ be a multi-valued infinite sequence in the normed linear space V which satisfies the Heine-Borel property and $\epsilon_{0} \geq 0$. Suppose that $\left\{x_{n}\right\}$ is ultimately bounded. Then the set $S S L$
of all the single-valued subsequential limits of $\left\{x_{n}\right\}$ is a non-empty and compact subset of V.

Proof. The ultimate boundedness of the sequence $\left\{x_{n}\right\}$ implies that the set $S S L$ is non-empty and bounded since V satisfies the Heine-Borel property. In order to verify that $S S L$ is a closed subset of V, let any member $\alpha \in \overline{S S L}$ be given. If α is an element of $S S L$ then we are done. Suppose that $\alpha \notin S S L$. Then α must be an accumulation point of the set $S S L$. By means of choosing the open balls $B\left(\alpha, \frac{1}{k}\right)$ for all natural numbers $k \in N$, we have a single-valued sequence $\left\{\alpha_{k}\right\} \subseteq S S L$ such that $\lim _{k \rightarrow \infty} \alpha_{k}=\alpha$. Since the first term α_{1} of the sequence $\left\{\alpha_{k}\right\}$ is an element of $S S L$, there is one value, say $x_{n_{1}}$, of the multi-valued term $x_{n_{1}}$ in $\left\{x_{n}\right\}$ such that $\left\|x_{n_{1}}-\alpha_{1}\right\|<1$. Similarly, since $\alpha_{2} \in S S L$, there is one value, say $x_{n_{2}}$, of the multi-valued term $x_{n_{2}}$ in $\left\{x_{n}\right\}$ such that $\left\|x_{n_{2}}-\alpha_{2}\right\|<\frac{1}{2}$ and $n_{2}>n_{1}$. By applying those methods, we can inductively choose a single-valued subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\|x_{n_{k}}-\alpha_{k}\right\|<\frac{1}{k}$ for all natural number $k \in N$. Since $\left\|x_{n_{k}}-\alpha\right\| \leq\left\|x_{n_{k}}-\alpha_{k}\right\|+\left\|\alpha_{k}-\alpha\right\|$, if we take the limit on both sides we have $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$. Thus we have $\alpha \in S S L$ which completes the proof.

Definition 1.5. Let D be a subset of a normed space V and $f: D \rightarrow$ W be a multi-valued function into the normed space W. We define that f is ϵ_{0}-uniformly continuous on D if and only if we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists \delta>0 \quad & \text { s.t. } \quad(\forall x, y \in D)\|x-y\|<\delta, \forall f(x), \forall f(y) \\
& \Rightarrow \quad\|f(x)-f(y)\|<\epsilon .
\end{aligned}
$$

2. The generalized Banach space

In this section, we define the concept of the ϵ_{0} generalized completeness of a set and the concept of the ϵ_{0} generalized Banach space. In this section, V denotes a normed linear space and ϵ_{0} denotes a fixed non-negative real number.

Definition 2.1. Let $\left\{x_{n}\right\}$ be a multi-valued sequence in V. We define that $\left\{x_{n}\right\}$ is an ϵ_{0}-Cauchy sequence if and only if

$$
\forall \epsilon>\epsilon_{0}, \exists K \in \text { Ns.t. }(\forall m, n) m, n \geq K, \forall x_{m}, \forall x_{n} \Rightarrow\left\|x_{m}-x_{n}\right\|<\epsilon
$$

Note that it is easy to prove that any ϵ_{0}-Cauchy sequence is ultimately bounded.

Definition 2.2. Let S be any non-empty subset of V. Then we define that S is ϵ_{0}-complete in V if and only if $\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n} \cap S \neq \emptyset$ for any ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\}$ in S.

Lemma 2.3. Let V be a normed linear space which satisfies the HeineBorel property, and let $\left\{x_{n}\right\}$ be an ϵ_{0}-Cauchy sequence in V. Then we have

$$
S S L \subseteq \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}
$$

Proof. Let $\left\{x_{n}\right\}$ be the given ϵ_{0}-Cauchy sequence in V. Then we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N & \text { s.t. } \\
\Longrightarrow & (\forall m, n) m, n \geq K, \forall x_{m}, \forall x_{n} \\
\Longrightarrow & \left\|x_{m}-x_{n}\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}
\end{aligned}
$$

since $\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}>\epsilon_{0}$. Since V satisfies the Heine-Borel property, we have $S S L \neq \emptyset$. Suppose that $\alpha \in S S L$. Then there is a single-valued and convergent subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$. Since $n_{k} \geq k$, we have, by replacing x_{n} to $x_{n_{k}}$,

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N & \text { s.t. } \quad(\forall m, k) m, k \geq K, \forall x_{m} \\
& \Longrightarrow \quad\left\|x_{m}-x_{n_{k}}\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2} .
\end{aligned}
$$

For each fixed term number m and each value of x_{m}, by taking the limit as k goes to ∞, we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N & \text { s.t. } \\
& (\forall m) m \geq K, \forall x_{m} \\
& \Longrightarrow x_{m}-\alpha \| \leq \epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}=\frac{\epsilon+\epsilon_{0}}{2}<\epsilon .
\end{aligned}
$$

Thus we have $\alpha \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}$. Consequently, $S S L \subseteq \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} x_{n}$.
Corollary 2.4. Let $\left\{x_{n}\right\}$ be an ϵ_{0}-Cauchy sequence in a normed linear space V which satisfies the Heine-Borel property. If we denote by hull $(S S L)$ the convex hull of $S S L$ then $\operatorname{hull}(S S L) \neq \emptyset$ and

$$
\operatorname{hull}(S S L) \subseteq \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} x_{n}=\underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right) .
$$

Proof. Since the convex hull of $S S L$ is the smallest convex subset of V which contains the set $S S L$, this corollary follows from lemmas 1.3, 2.3 and the convex property of the ϵ_{0}-limit.

Lemma 2.5. Let $\left\{x_{n}\right\}$ be an ϵ_{0}-Cauchy sequence in a normed linear space V. If $\alpha, \beta \in S S L$ then $\|\alpha-\beta\| \leq \epsilon_{0}$. Hence the diameter of $S S L$ is less than or equal to ϵ_{0}.

Proof. Since $\left\{x_{n}\right\}$ is an ϵ_{0}-Cauchy sequence in V, we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N & \text { s.t. } \\
& (\forall m, n) m, n \geq K, \forall x_{m}, \forall x_{n} \\
\Longrightarrow & \left\|x_{m}-x_{n}\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}
\end{aligned}
$$

since $\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}>\epsilon_{0}$. And since $\alpha, \beta \in S S L$, there are two singlevalued and convergent subsequences $\left\{x_{m_{k}}\right\}$ and $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{k \rightarrow \infty} x_{m_{k}}=\alpha$ and $\lim _{k \rightarrow \infty} x_{n_{k}}=\beta$. Since $m_{k}, n_{k} \geq k$, we have

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t. }(\forall k) k \geq K \Longrightarrow\left\|x_{m_{k}}-x_{n_{k}}\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2} .
$$

If we take the limit as k goes to ∞, we have

$$
\|\alpha-\beta\| \leq \epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}=\frac{\epsilon+\epsilon_{0}}{2}<\epsilon .
$$

Since $\epsilon>\epsilon_{0}$ was arbitrary, this implies that $\|\alpha-\beta\| \leq \epsilon_{0}$. Hence the diameter of $S S L$ is less than or equal to ϵ_{0}.

Theorem 2.6. Let $\left\{x_{n}\right\}$ be an ϵ_{0}-Cauchy sequence in a normed linear space V which satisfies the Heine-Borel property. If $\epsilon_{0}>0$ and $\operatorname{diam}\left(S S L\left(\left\{x_{n}\right\}\right)\right)=d$ then there exists an open convex subset G of V such that

$$
\operatorname{hull}(S S L) \cap G \neq \emptyset \text { and } \bar{G} \subseteq \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} x_{n}
$$

Proof. Since $\left\{x_{n}\right\}$ is ultimately bounded, $S S L$ is non-empty and compact by lemma 1.4. Hence there is a point $\alpha \in S S L$. If $S S L=\{\alpha\}$ is a singleton then we choose the open set G as $G=B\left(\alpha, \epsilon_{0}\right)$. Then we have $\operatorname{hull}(S S L) \cap G=\{\alpha\} \neq \emptyset$ and $\bar{G}=\bar{B}\left(\alpha, \epsilon_{0}\right)=\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}$. Suppose that $S S L$ is not a singleton. Then $\operatorname{hull}(S S L)$ is not a singleton, too, and has the same diameter. Hence there are two points $\alpha, \beta \in \operatorname{hull}(S S L)$ such that $\|\alpha-\beta\|=d>0$ since $\operatorname{hull}(S S L)$ is also compact and $\operatorname{diam}(\operatorname{hull}(S S L))=d>0$. For each element $x \in T=\bar{B}(\alpha, d) \cap \bar{B}(\beta, d)$, the quantity $\sup \{\|y-x\|: y \in \operatorname{hull}(S S L)\}$ is a non-negative real number since $\operatorname{hull}(S S L)$ is compact. Hence the infimum $r=\inf \{\sup \{\|y-x\|$: $y \in \operatorname{hull}(S S L)\}: x \in T\}$ exists. At the first step, we will prove that this infimum r is less than the diameter d of $\operatorname{hull}(S S L)$. Assume
that $r \geq d$. Then we have $\sup \{\|y-x\|: y \in \operatorname{hull}(S S L)\} \geq d$ for all $x \in T$. In particular, we have $\sup \{\|y-\gamma\|: y \in \operatorname{hull}(S S L)\} \geq$ d. Here $\gamma=\frac{\alpha+\beta}{2}$. Since γ is the center point of the line segment $\overline{\alpha \beta} \subseteq \operatorname{hull}(S S L)$, we must have $\sup \{\|y-\gamma\|: y \in \operatorname{hull}(S S L)\}=d$. Since $\operatorname{hull}(S S L)$ is compact, there is a point $y_{\gamma} \in \operatorname{hull}(S S L)$ such that $\left\|y_{\gamma}-\gamma\right\|=\sup \{\|y-\gamma\|: y \in \operatorname{hull}(S S L)\}=d$. Thus $y_{\gamma} \in \partial(\bar{B}(\gamma, d))$. Now consider the midpoint $\eta=\frac{\gamma+y_{\gamma}}{2}$. Since η is a point of the set T, we also have $\sup \{\|y-\eta\|: y \in \operatorname{hull}(S S L)\} \geq r \geq d$ by the assumption $r \geq d$. And there is an element $y_{\eta} \in \operatorname{hull}(S S L)$ such that $\left\|y_{\eta}-\eta\right\|=$ $\sup \{\|y-\eta\|: y \in \operatorname{hull}(S S L)\} \geq r \geq d$ since $\operatorname{hull}(S S L)$ is compact. But we have $y_{\eta} \in[\bar{B}(\gamma, d)-B(\eta, d)]$ and this set $\bar{B}(\gamma, d)-B(\eta, d)$ is disjoint from the closed ball $\bar{B}\left(y_{\gamma}, d\right)$. For if $z \in \bar{B}(\gamma, d)-B(\eta, d) \cap \bar{B}\left(y_{\gamma}, d\right)$, then we have $\|z-\gamma\| \leq d,\|z-\eta\|>d$ and $\left\|z-y_{\gamma}\right\| \leq d$ which is a contradiction since $\eta=\frac{\gamma+y_{\gamma}}{2}$. Thus we have $\left\|y_{\eta}-y_{\gamma}\right\|>d$ which is a contradiction with the fact that $\operatorname{diam}(\operatorname{hull}(S S L))=d$. Therefore, the infimum r must satisfy the relation $r<d$. And this infimum is in fact the minimum of that set since $\operatorname{hull}(S S L)$ and T are compact. Hence there is a point $x_{0} \in T$ and is the minimum real number r_{0} such that $0<r_{0}<d$ and $\operatorname{hull}(S S L) \subseteq \bar{B}\left(x_{0}, r_{0}\right)$. At the next step, since the number r_{0} is the minimal number such that $r_{0}=\inf \left\{\sup \left\{\left\|y-x_{0}\right\|: y \in \operatorname{hull}(S S L)\right\}: x_{0} \in T\right\}$, it is obvious that x_{0} can be chosen so that $x_{0} \in \operatorname{hull}(S S L)$. Then we have $\operatorname{hull}(S S L) \cap B\left(x_{0}, r_{0}\right) \neq \emptyset$ and $S S L \subseteq \bar{B}\left(x_{0}, r_{0}\right)$. Moreover, by taking $G=B\left(x_{0}, \epsilon_{0}-r_{0}\right)$, we have

$$
\begin{aligned}
\bar{G}=\bar{B}\left(x_{0}, \epsilon_{0}-r_{0}\right) & =\bigcap_{\alpha \in \bar{B}\left(x_{0}, r_{0}\right)}^{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right) \\
& \subseteq \bigcap_{\alpha \in S S L}^{\bar{B}}\left(\alpha, \epsilon_{0}\right) \\
& =\frac{\epsilon_{0}-\lim }{n \rightarrow \infty} x_{n}
\end{aligned}
$$

which completes the proof.
Corollary 2.7. If $D \subseteq R^{m}$ satisfies $\underset{b \in D}{\cup} \bar{B}\left(b,\left\{1-\frac{\sqrt{3}}{2}\right\} \epsilon_{0}\right)=R^{m}$ then D is ϵ_{0}-complete.

Proof. At first, assume that $\epsilon_{0}=0$ and let any 0 -Cauchy sequence $\left\{x_{n}\right\}$ be given. Then any single-valued subsequence of $\left\{x_{n}\right\}$ is a Cauchy sequence in the usual sense. Since R^{m} is complete in the usual sense
and $\left\{x_{n}\right\}$ is a 0 -Cauchy sequence, the set of all the subsequential limits $S S L\left(\left\{x_{n}\right\}\right)$ must be a singleton. Thus $\left\{x_{n}\right\}$ is a 0 -convergent sequence. Now suppose that $\epsilon_{0}>0$ and any ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\}$ in D be given. If $\operatorname{hull}(S S L)=\{\alpha\}$ is a singleton, then the ϵ_{0}-limit of $\left\{x_{n}\right\}$ is $\bar{B}\left(\alpha, \epsilon_{0}\right)$ which implies that the sequence $\left\{x_{n}\right\}$ is ϵ_{0}-convergent. Suppose that $h u l l(S S L)$ is not a singleton. At the first step, we will show that the minimum r_{0} in the theorem just above satisfies the inequality $r_{0} \leq \frac{\sqrt{3}}{2} d$ if the diameter of $\operatorname{hull}\left(S S L\left(x_{n}\right)\right)$ is d for an ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\}$ in D. Since $\operatorname{hull}(S S L)$ is not a singleton, there are two distinct elements $x_{0}, y_{0} \in \operatorname{hull}(S S L)$ such that $\left\|x_{0}-y_{0}\right\|=d$ since $\operatorname{hull}(S S L)$ is compact. By an appropriate rotation and translation of the axes and the origin in the usual Euclidean coordinate system of R^{m}, we may assume that $x_{0}=\left(-\frac{d}{2}, 0, \cdots, 0\right), y_{0}=\left(\frac{d}{2}, 0, \cdots, 0\right)$ and $\frac{x_{0}+y_{0}}{2}=(0,0, \cdots, 0)$. Then we must have

$$
\operatorname{hull}(S S L) \subseteq \bar{B}\left(x_{0}, d\right) \cap \bar{B}\left(y_{0}, d\right)
$$

since $\operatorname{diam}(\operatorname{hull}(S S L))=d$. But the equation of the most far boundary from the origin of the intersection of the boundaries $\partial \bar{B}\left(x_{0}, d\right)$ and $\partial \bar{B}\left(y_{0}, d\right)$ is given by

$$
\left(x_{1}-\frac{d}{2}\right)^{2}+x_{2}^{2}+\cdots+x_{m}^{2}=d^{2}=\left(x_{1}+\frac{d}{2}\right)^{2}+x_{2}^{2}+\cdots+x_{m}^{2}
$$

That is, we have

$$
x_{1}=0, x_{2}^{2}+\cdots+x_{m}^{2}=\frac{3}{4} d^{2} .
$$

Thus the distance between the origin and the boundary of the intersection $\bar{B}\left(x_{0}, d\right) \cap \bar{B}\left(y_{0}, d\right)$ satisfies the inequality

$$
\operatorname{dist}\left(0, \partial\left\{\bar{B}\left(x_{0}, d\right) \cap \bar{B}\left(y_{0}, d\right)\right\}\right) \leq \frac{\sqrt{3}}{2} d
$$

Hence $\operatorname{hull}(S S L)$ is contained in the closed ball with the radius $\frac{\sqrt{3}}{2} d$. Then, by the theorem just above, there is a point $x \in \operatorname{hull}(S S L)$ and exists a real number $r_{0} \leq \frac{\sqrt{3}}{2} d$ such that $\bar{B}\left(x, \epsilon_{0}-r_{0}\right) \subseteq \frac{\epsilon_{0}-\lim }{n \rightarrow \infty} x_{n}$. But we have

$$
\epsilon_{0}-r_{0} \geq \epsilon_{0}-\frac{\sqrt{3}}{2} d \geq \epsilon_{0}-\frac{\sqrt{3}}{2} \epsilon_{0}=\left(1-\frac{\sqrt{3}}{2}\right) \epsilon_{0}
$$

Since this inequality implies that $\bar{B}\left(x,\left(1-\frac{\sqrt{3}}{2}\right) \epsilon_{0}\right) \subseteq \bar{B}\left(x, \epsilon_{0}-r_{0}\right)$, we have $D \cap \bar{B}\left(x, \epsilon_{0}-r_{0}\right) \neq \emptyset$ which implies that $\left\{x_{n}\right\}$ is an ϵ_{0}-convergent sequence. Therefore, D is ϵ_{0}-complete.

Note that if V is a normed linear space which satisfies the Heine-Borel property and $\epsilon_{0}>0$, then any dense subset D of V in the usual sense is ϵ_{0}-complete since $D \cap \bar{B}(x, r) \neq \emptyset$ for all $x \in V$ and all $r>0$.

Theorem 2.8. Let V be a normed linear space which satisfies the Heine-Borel property. Then any closed subset D of V is ϵ_{0}-complete for all $\epsilon_{0} \geq 0$.

Proof. Suppose that D is a closed subset of V and let any ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\} \subseteq D$ be given. By corollary 2.4, we have

$$
S S L \subseteq \frac{\epsilon_{0}-\lim }{n \rightarrow \infty} x_{n}
$$

But the set $S S L\left(\left\{x_{n}\right\}\right) \neq \emptyset$ since $\left\{x_{n}\right\}$ is ultimately bounded. Since $S S L \subseteq \bar{D}$, this implies that

$$
\emptyset \neq S S L \subseteq \bar{D} \cap \underset{n \rightarrow \infty}{\epsilon_{0}-\lim } x_{n}
$$

But we have $\bar{D}=D$ since D is closed. Thus D is ϵ_{0}-complete for all $\epsilon_{0} \geq 0$.

Corollary 2.9. Let V be a normed linear space which satisfies the Heine-Borel property. Let $D \neq \emptyset$ be a subset of V and a real number $\epsilon_{0} \geq 0$ be given. If D is ϵ_{0}-complete then \bar{D} is ϵ_{0}-complete. But the converse is not true in general.

Proof. By the theorem just above, it is clear that \bar{D} is ϵ_{0}-complete. Now consider the subset D of R given by

$$
D=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}
$$

Then $\bar{D}=D \cup\{0,1\}$ is 1-complete since it is closed. But if we choose a sequence $\left\{x_{n}\right\}$ such that $x_{2 n}=-\frac{1}{2 n}$ and $x_{2 n-1}=1+\frac{1}{2 n-1}$ for each $n \in N$ then $\operatorname{SSL}\left(\left\{x_{n}\right\}\right)=\{0,1\}$. Hence we have

$$
{\underset{n \rightarrow \infty}{\epsilon_{0}-\lim } x_{n}=\underset{\alpha \in\{0,1\}}{\cap} \bar{B}(\alpha, 1)=[0,1] . ~}_{n} .
$$

Since $D \cap[0,1]=\emptyset, D$ is not 1-complete.

Theorem 2.10. Let V be a normed linear space which satisfies the Heine-Borel property. Then any convex subset D of V is ϵ_{0}-complete for all $\epsilon_{0}>0$.

Proof. Suppose that D is a convex subset of V. Since \emptyset is ϵ_{0}-complete, we may assume that $D \neq \emptyset$. And let any ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\} \subseteq D$ be given. Since $\left\{x_{n}\right\}$ is also an ϵ_{0}-Cauchy sequence in \bar{D} which is $\epsilon_{0^{-}}$ complete by theorem 2.8, we have

$$
\emptyset \neq \operatorname{hull}(S S L) \subseteq \bar{D} \cap \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}=\bar{D} \cap \underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right)
$$

since \bar{D} is also convex. If $D \cap \operatorname{hull}(S S L) \neq \emptyset$ then we are done since the intersection of D and the ϵ_{0}-limit of $\left\{x_{n}\right\}$ is not an empty set. Now suppose that $D \cap \operatorname{hull}(S S L)=\emptyset$. Then $\operatorname{hull}(S S L)$ is a subset of the derived set D^{\prime}, the set of all the accumulation points of D. That is, it is a subset of the set $D^{\prime}-D$. By the theorem 2.6, there is an open convex subset G of V such that

$$
\operatorname{hull}(S S L) \cap G \neq \emptyset \text { and } \bar{G} \subseteq \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} x_{n}
$$

Choose a point $\alpha \in \operatorname{hull}(S S L) \cap G$. Then $\alpha \in D^{\prime}-D$ and $\alpha \in G$. Since G is an open set containing the accumulation point α of D, there is a point $\beta \in D$ such that $\beta \in G$ and $\beta \neq \alpha$. Then

$$
\beta \in D \cap G \subseteq D \cap \cap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)
$$

Thus $D \cap \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n} \neq \emptyset$ which completes the proof.
Note that the convex subset of V is not 0 -complete in general.
Proposition 2.11. (1) The union of the ϵ_{0}-complete subsets does not need to be ϵ_{0}-complete. (2) The intersection of the ϵ_{0}-complete subsets does not need to be ϵ_{0}-complete.

Proof. (1) Let $D_{1}=\left\{-\frac{1}{n}: n \in N\right\}$ and $D_{2}=\left\{1+\frac{1}{n}: n \in N\right\}$. In order to prove that D_{1} is 1-complete, let any 1-Cauchy sequence $\left\{x_{n}\right\} \subseteq D_{1}$ be given. Then $S S L\left(\left\{x_{n}\right\}\right) \neq \emptyset$ and $S S L \subseteq D_{1} \cup\{0\}$. Hence we have

$$
[-1,0] \subseteq \bigcap_{\alpha \in D_{1} \cup\{0\}}^{\cap} \bar{B}(\alpha, 1) \subseteq \cap_{\alpha \in S S L} \bar{B}(\alpha, 1)=\underset{n \longrightarrow \infty}{1-\lim } x_{n}
$$

Thus the intersection of D_{1} and the 1-limit of $\left\{x_{n}\right\}$ is not an empty set. Hence D_{1} is 1-complete. Since the diameter of D_{2} is 1 , we can prove by the same method that D_{2} is also 1-complete. But the union

$$
D_{1} \cup D_{2}=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}
$$

is not 1-complete as in the proof of corollary 2.9. (2) Let $D_{1}=\left\{-\frac{1}{n}, 0,1+\right.$ $\left.\frac{1}{n}: n \in N\right\}$ and $D_{2}=\left\{-\frac{1}{n}, 1,1+\frac{1}{n}: n \in N\right\}$. In order to prove that D_{1} is 1-complete, let any 1-Cauchy sequence $\left\{x_{n}\right\} \subseteq D_{1}$ be given. Since the diameter of $S S L$ satisfies the inequality $\operatorname{Diam}(S S L) \leq 1$, the following three cases occur.

$$
\begin{aligned}
& \text { (i) } \quad \emptyset \neq S S L=\{0,1\} \\
& \text { (ii) } \emptyset \neq S S L \subseteq\left\{-\frac{1}{n}, 0: n \in N\right\}, \\
& \text { (iii) } \emptyset \neq S S L \subseteq\left\{1+\frac{1}{n}, 1: n \in N\right\}
\end{aligned}
$$

(i) If $S S L=\{0,1\}$ then $D_{1} \cap \underset{n \longrightarrow \infty}{1-\lim } x_{n}=D_{1} \cap[0,1]=\{0\} \neq \emptyset$. (ii) If $S S L \subseteq\left\{-\frac{1}{n}, 0: n \in N\right\}$ then $D_{1} \cap \frac{1-\lim }{n \rightarrow \infty} x_{n} \supseteq\left\{-\frac{1}{n}, 0: n \in N\right\} \neq \emptyset$. (iii) If $S S L \subseteq\left\{1+\frac{1}{n}, 1: n \in N\right\}$ then $D_{1} \cap \sqrt{1-\lim } x_{n} \supseteq\left\{1+\frac{1}{n}: n \in\right.$ $N\} \neq \emptyset$. Therefore, D_{1} is 1-complete. On the other hand, we can prove by the same method that D_{2} is also 1-complete. But the intersection

$$
D_{1} \cap D_{2}=\left\{-\frac{1}{n}, 1+\frac{1}{n}: n \in N\right\}
$$

is not 1 -complete as in the proof of (1).
Proposition 2.12. Let V be a normed linear space which satisfies the Heine-Borel property and let $\epsilon_{0}>0$ be a positive real number. If a subset D of V is not ϵ_{0}-complete then there is an ϵ_{0}-Cauchy sequence $\left\{x_{p}\right\}$ such that hull $(S S L) \cap B(\gamma, r) \neq \emptyset, S S L \cap B(\gamma, r)=\emptyset$ and $\operatorname{diam}(S S L)=\epsilon_{0}$ for some $\gamma \in V$ and some positive real number $r>0$. Moreover, $S S L$ satisfies the following condition.

$$
\forall \alpha \in S S L, \exists \beta \in S S L \text { s.t. }\|\alpha-\beta\|=\epsilon_{0}
$$

Proof. Suppose that D is not ϵ_{0}-complete. Then there is an ϵ_{0}-Cauchy sequence $\left\{x_{p}\right\}$ in D such that $D \cap \underset{p \rightarrow \infty}{\epsilon_{0}-\lim } x_{p}=\emptyset$. If $\operatorname{hull}(S S L) \cap D \neq \emptyset$
then we have

$$
\emptyset \neq D \cap \operatorname{hull}(S S L) \subseteq D \cap\left\{\underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\} \subseteq D \cap \underset{p \rightarrow \infty}{\epsilon_{0}-\lim } x_{p}
$$

This is a contradiction. Hence $\operatorname{hull}(S S L) \cap D=\emptyset$ and $S S L \subseteq D^{\prime}-D$ since $S S L \subseteq \bar{D}$. On the other hand, there is an element γ and is a real number $r>0$ by theorem 2.6 such that

$$
\operatorname{hull}(S S L) \cap B(\gamma, r) \neq \emptyset \text { and } \bar{B}(\gamma, r) \subseteq \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right) .
$$

It is obvious that $D \cap B(\gamma, r)=\emptyset$. And if $S S L \cap B(\gamma, r) \neq \emptyset$ then there exists an element $\alpha_{0} \in S S L \subseteq D^{\prime}-D$ such that $\alpha_{0} \in B(\gamma, r)$. Since α_{0} is an accumulation point of D and $B(\gamma, r)$ is an open set, there exists an element $x \in D$ such that $x \in B(\gamma, r)$. Hence we have $D \cap\left\{\underset{\alpha \in S S L}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\} \neq \emptyset$ which is a contradiction. Hence we have $S S L \cap$ $B(\gamma, r)=\emptyset$. Now suppose that there is an element $\alpha_{0} \in S S L$ such that $\left\|\alpha_{0}-\beta\right\|<\epsilon_{0}$ for all elements $\beta \in S S L$. Then we have

$$
\max \left\{\left\|\alpha_{0}-\beta\right\|: \beta \in S S L\right\}=r_{0}<\epsilon_{0}
$$

since $S S L$ is compact. Then we have

$$
\alpha_{0} \in B\left(\alpha_{0}, \epsilon_{0}-r_{0}\right) \subseteq \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right) .
$$

Since $\alpha_{0} \in D^{\prime}-D$ and $B\left(\alpha_{0}, \epsilon_{0}-r_{0}\right)$ is an open set containing α_{0}, we have $D \cap B\left(\alpha_{0}, \epsilon_{0}-r_{0}\right) \neq \emptyset$. This is a contradiction as the above. Since the diameter of $S S L$ is not greater than ϵ_{0}, this contradiction implies that

$$
\forall \alpha \in S S L, \exists \beta \in S S L \text { s.t. }\|\alpha-\beta\|=\epsilon_{0}
$$

and $\operatorname{diam}(S S L)=\epsilon_{0}$.
Theorem 2.13. Let D be a non-empty subset of a normed linear space V which satisfies the Heine-Borel property and let $\epsilon_{0}>0$. Then D is not ϵ_{0}-complete if and only if there is a compact subset S of $D^{\prime}-D$ such that $\operatorname{diam}(S)=\epsilon_{0}$ and $D \cap\left\{\cap_{\alpha \in S} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=\emptyset$.

Proof. (\Rightarrow) Suppose that D is not ϵ_{0}-complete. Then we have an ϵ_{0}-Cauchy sequence $\left\{x_{p}\right\}$ such that $D \cap \underset{p \rightarrow \infty}{\epsilon_{0}-\lim } x_{p}=\emptyset$. As in the proof of the proposition just above, we have $S S L\left(\left\{x_{p}\right\}\right) \subseteq D^{\prime}-D$ and $\operatorname{diam}[S S L]=\epsilon_{0}$. Now put $S=S S L\left(\left\{x_{p}\right\}\right)$. Then S is compact by
lemma 1.4. And $\operatorname{diam}(S)=\epsilon_{0}$ and $S \subseteq D^{\prime}-D$ as in the proof of the proposition just above. Moreover,

$$
D \cap\left\{\cap_{\alpha \in S} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=D \cap\left\{\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=\emptyset
$$

since $\underset{\left.\alpha \in \operatorname{SSL} L\left\{x_{p}\right\}\right)}{\cap} \bar{B}\left(\alpha, \epsilon_{0}\right)=\underset{p \longrightarrow \infty}{\epsilon_{0}-\lim } x_{p} . \quad(\Leftarrow)$ Suppose that there exists a compact subset S of $D^{\prime}-D$ such that $D \cap\left\{\cap_{\alpha \in S} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=\emptyset$ and $\operatorname{diam}(S)=\epsilon_{0}$. Since $S \subseteq D^{\prime}-D$, for each $\alpha \in S$, there is a singlevalued sequence $\left\{x_{\alpha_{p}}\right\}$ in D such that $\left\|x_{\alpha_{p}}-\alpha\right\|<\frac{1}{p}$ for each $p \in N$. In order to verify that D is not ϵ_{0}-complete, let's choose a multi-valued sequence $\left\{x_{p}\right\}$ so that $x_{p}=\left\{x_{\alpha_{p}}: \alpha \in S\right\}$ for each $p \in N$. In order to show that $\left\{x_{p}\right\}$ is an ϵ_{0}-Cauchy sequence, let any positive number $\epsilon>\epsilon_{0}$ be given. Choosing a natural number $K \in N$ so large that $K>\frac{2}{\epsilon-\epsilon_{0}}$, we have, since $\|\alpha-\beta\| \leq \epsilon_{0}$ for all $\alpha, \beta \in S$,

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, & \exists K \in N \text { s.t. }(\forall p, q) p, q \geq K, \forall x_{\alpha_{p}} \in x_{p}, \forall x_{\beta_{q}} \in x_{q} \\
& \Rightarrow\left\|x_{\alpha_{p}}-x_{\beta_{q}}\right\| \leq\left\|x_{\alpha_{p}}-\alpha\right\|+\|\alpha-\beta\|+\left\|\beta-x_{\beta_{q}}\right\| \\
& \leq \frac{1}{p}+\epsilon_{0}+\frac{1}{q} \leq \frac{2}{K}+\epsilon_{0} \\
& <\epsilon-\epsilon_{0}+\epsilon_{0}=\epsilon .
\end{aligned}
$$

Thus the sequence $\left\{x_{p}\right\}$ is an ϵ_{0}-Cauchy sequence in D. Since the limit of the subsequential limits is also a subsequential limit, we have $S S L\left(\left\{x_{p}\right\}\right)=\bar{S}$. But $\bar{S}=S$ since S is closed. Thus $S S L\left(\left\{x_{p}\right\}\right)=S$. Finally, by the assumption, we have

$$
D \cap\left\{\cap_{\alpha \in S S L\left(\left\{x_{p}\right\}\right)} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=D \cap\left\{\cap_{\alpha \in S} \bar{B}\left(\alpha, \epsilon_{0}\right)\right\}=\emptyset
$$

Consequently, D is not ϵ_{0}-complete.
Proposition 2.14. (Criterion) Let V, W be two normed linear spaces such that both V and W satisfy the Heine-Borel property. Let $f: D \rightarrow$ W be a multi-valued function defined on a bounded subset D of V. Then f is ϵ_{0}-uniformly continuous on D if and only if $\left\{f\left(x_{p}\right)\right\}$ is an ϵ_{0}-Cauchy sequence in W for every 0-Cauchy sequence $\left\{x_{p}\right\}$ on D.

Proof. (\Rightarrow) Suppose that f is ϵ_{0}-uniformly continuous on D and any 0 -Cauchy sequence $\left\{x_{n}\right\}$ on D be given. Then we have

$$
\begin{array}{rlrl}
\forall \epsilon>\epsilon_{0}, \exists \delta>0 \quad & \text { s.t. } & (\forall x, y \in D)\|x-y\|<\delta, \forall f(x), \forall f(y) \\
& \Rightarrow \quad\|f(x)-f(y)\|<\epsilon .
\end{array}
$$

Since $\left\{x_{n}\right\}$ is a 0 -Cauchy sequence, we have

$$
\exists K \in N \text {, s.t. }(\forall p, q \in N) p, q \geq K, \forall x_{p}, \forall x_{q} \Rightarrow\left\|x_{p}-x_{q}\right\|<\delta .
$$

Thus we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N \quad & \text { s.t. } \quad(\forall p, q \in N) p, q \geq K, \forall f\left(x_{p}\right), \forall f\left(x_{q}\right) \\
& \Rightarrow \quad\left\|f\left(x_{p}\right)-f\left(x_{q}\right)\right\|<\epsilon .
\end{aligned}
$$

Therefore, $\left\{f\left(x_{p}\right)\right\}$ is an ϵ_{0}-Cauchy sequence in $W .(\Leftarrow)$ Suppose that f is not ϵ_{0}-uniformly continuous on D. Then we have

$$
\begin{array}{rll}
\exists \epsilon_{1}>\epsilon_{0} & \text { s.t. } & \left\{\forall \delta>0, \exists x_{\delta}, y_{\delta} \in D, \exists f\left(x_{\delta}\right), f\left(y_{\delta}\right) \in W\right. \\
& \text { s.t. } & \left.\left\|x_{\delta}-y_{\delta}\right\|<\delta,\left\|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right\| \geq \epsilon_{1}\right\}
\end{array}
$$

Choosing $\delta=\frac{1}{p}$ for each natural number $p \in N$, we have

$$
\begin{aligned}
\exists\left\{x_{p}\right\},\left\{y_{p}\right\} \subseteq D & \wedge \quad \exists\left\{f\left(x_{p}\right)\right\},\left\{f\left(y_{p}\right)\right\} \subseteq W \\
\text { s.t. } & \left\|x_{p}-y_{p}\right\|<\frac{1}{p} \wedge\left\|f\left(x_{p}\right)-f\left(y_{p}\right)\right\| \geq \epsilon_{1} .
\end{aligned}
$$

Since $\left\{x_{p}\right\}$ and $\left\{y_{p}\right\}$ are bounded sequences in a bounded subset D and the closure \bar{D} is compact, we may assume that $\lim _{p \rightarrow \infty} x_{p}=\lim _{p \rightarrow \infty} y_{p}=\alpha$ for some $\alpha \in \bar{D}$ by choosing single-valued and convergent subsequences. Let's define a sequence $\left\{z_{p}\right\}$ by $z_{2 p-1}=x_{p}$ and $z_{2 p}=y_{p}$ for each natural number $p \in N$. Then $\lim _{p \rightarrow \infty} z_{p}=\alpha$ and $\left\{z_{p}\right\}$ is a 0 -Cauchy sequence in D. But we have

$$
\left\|f\left(z_{2 p-1}\right)-f\left(z_{2 p}\right)\right\|=\left\|f\left(x_{p}\right)-f\left(y_{p}\right)\right\| \geq \epsilon_{1}
$$

for all $p \in N$. Hence $\left\{f\left(z_{p}\right)\right\}$ is not an ϵ_{0}-Cauchy sequence. This is a contradiction which completes the proof.

Theorem 2.15. Let V, W be two normed linear spaces such that both V and W satisfy the Heine-Borel property. And let $f: D \rightarrow W$ be a multi-valued function defined on a 0 - complete subset D of V. If f is ϵ_{0}-uniformly continuous on D then, for every 0 -Cauchy sequence $\left\{x_{p}\right\}$ on D, there is an element $\alpha \in D$ such that $\left\{f\left(x_{p}\right)\right\} \epsilon_{0}$-converges to $f(\alpha) \in f(D)$.

Proof. Let any 0-Cauchy sequence $\left\{x_{p}\right\}$ on D be given. Since $f(x)$ is ϵ_{0}-uniformly continuous on D, we have

$$
\begin{array}{rlrl}
\forall \epsilon>\epsilon_{0}, \exists \delta>0 \quad & \text { s.t. } & (\forall x, y \in D)\|x-y\|<\delta, \forall f(x), \forall f(y) \\
& \Rightarrow \quad\|f(x)-f(y)\|<\epsilon .
\end{array}
$$

But we have $\underset{p \rightarrow \infty}{0-\lim } x_{p}=\{\alpha\}$ for some $\alpha \in D$ since D is 0 -complete. Hence we have

$$
\exists K \in N \text { s.t. } \forall p \geq K, \forall x_{p} \Rightarrow\left\|x_{p}-\alpha\right\|<\delta .
$$

Hence we have

$$
\begin{aligned}
\forall \epsilon>\epsilon_{0}, \exists K \in N & \text { s.t. } \quad \forall p \geq K, \forall f\left(x_{p}\right), \forall f(\alpha) \\
& \Rightarrow\left\|f\left(x_{p}\right)-f(\alpha)\right\|<\epsilon .
\end{aligned}
$$

Thus we have $f(\alpha) \in \underset{p \rightarrow \infty}{0-\lim } f\left(x_{p}\right)$ for all values of $f(\alpha)$. Since $f(\alpha) \in$ $f(D)$ for all values of $f(\alpha)$, the sequence $\left\{f\left(x_{p}\right)\right\}$ is an ϵ_{0}-convergent sequence of $f(D)$.

Now we introduce a concept of the generalized Banach spaces.
Definition 2.16. Let $\epsilon_{0} \geq 0$ be a non-negative real number. A linear space V on a field F is called the ϵ_{0}-Banach space if and only if V is an ϵ_{0}-complete normed linear space.

Proposition 2.17. Let V be a real normed linear space which satisfies the Heine-Borel property. Then V is the ϵ_{0}-Banach space for all real number $\epsilon_{0} \geq 0$.

Proof. Let any ϵ_{0}-Cauchy sequence $\left\{x_{n}\right\}$ in V be given. Then we have $\forall \epsilon>\epsilon_{0}, \exists K \in N$ such that $\forall m, n \geq K, \forall x_{m}, x_{n} \Rightarrow\left\|x_{m}-x_{n}\right\|<\epsilon$.
Since $\left\{x_{n}\right\}$ is ultimately bounded, the set $S S L$ of all the subsequential limits of $\left\{x_{n}\right\}$ is not empty and compact. Hence, by lemma 2.3,

$$
\emptyset \neq S S L \subseteq \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} x_{n} .
$$

Hence V is ϵ_{0}-complete which completes the proof.
Theorem 2.18. Let V be a real normed linear space which satisfies the Heine-Borel property. Then any linear subspace W of V is the $\epsilon_{0}-$ Banach space for all real number $\epsilon_{0}>0$.

Proof. Any linear subspace W is a convex subset of V. By the theorem 2.10, W is ϵ_{0}-complete. Hence W is also an ϵ_{0}-Banach space for all real number $\epsilon_{0}>0$.

References

[1] Chawalit Boonpok, Generalized (Λ, b)-closed sets in topological spaces, Korean J. Math. 25 (3) (2017).
[2] Hi-joon Chae, Byungheup Jun, and Jungyun Lee, Continued fractions and the density of graphs of some functions, Korean J. Math. 25 (2) (2017).
[3] D. L. Cohn, Measure Theory, Berkhauser Boston. (1980).
[4] B. H. Kang, An Introduction to $\epsilon_{0}-$ Density and $\epsilon_{0}-$ Dense Ace, JCMS vol31. (2018)
[5] B. H. Kang, The sequential attainability and attainable ace, Korean J. Math. 26 (4) (2018).
[6] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag (1965).

Buhyeon Kang
Department of Mathematics
Seokyeong University
Seoul 02713, Korea
E-mail: gangage@skuniv.ac.kr

[^0]: Received January 31, 2019. Revised July 27, 2019. Accepted September 10, 2019. 2010 Mathematics Subject Classification: 03H05, 26E35.
 Key words and phrases: ϵ_{0}-Cauchy sequence, ϵ_{0}-complete, ϵ_{0}-Banach spaces, generalized Banach spaces.
 (c) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

