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DIAGONAL SUMS IN NEGATIVE TRINOMIAL TABLE

Eunmi Choi and Yuna Oh

Abstract. We study the negative trinomial table T ′ of (x2 + x +
1)−n and its t/u-slope diagonals for any t, u > 0. We investigate
recurrence formula of the t/u-slope diagonal sums of T ′ and find
interrelationships with t/u-slope diagonal sums of the trinomial table
T .

1. introduction

The Pascal table P and the negative Pascal table P ′ are well known
arithmetic tables of (x + 1)±n respectively for n ≥ 0. Each diagonal
sum over P makes a Fibonacci number Fn, and it is not hard to see
that certain diagonal sums over P ′ makes F−n by comparing the tables
P and P ′ ([1], [6], [7]). In fact, each diagonals and rows in P can be
found as a type of diagonals in P ′. As a generalization, there have been
researches about the trinomial table T and the negative trinomial table
T ′ of (x2 + x+ 1)±n respectively ([3], [4]).

T
0| 1
1| 1 1 1
2| 1 2 3 2 1
3| 1 3 6 7 6 3
4| 1 4 10 16 19 16
5| 1 5 15 30 45 51

and

T ′

1| 1−1 0 1 −1 0
2| 1−2 1 2 −4 2
3| 1−3 3 2 −9 9
4| 1−4 6 0−15 24
5| 1−5 10 −5−20 49
6| 1−6 15−14−21 84
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Each diagonal sum over T makes a tribonacci number ([2], [5]). How-
ever unlike P and P ′, interrelationships between components of T and
T ′ may not be seen easily by only looking at the tables. For example,
the marked diagonal {1, 4, 6, 2} in T may not be appeared in any type
of diagonals in T ′.

In this work we investigate sequences of certain diagonal sums in T ′,
and find their interrelationships. We consider various diagonals of any
slope t/u that moves u steps in x-axis and t steps in y-axis over both T
and T ′. And we study sequential properties of t/u-slope diagonal sums.
Throughout the work, let P = [ui,j] and P ′ = [u′i,j] be (negative) Pascal
tables, while T = [ei,j] and T ′ = [e′i,j] be the (negative) trinomial tables
for i, j ≥ 0.

2. Certain slope diagonal sums of Negative trinomial table

For integers t, u > 0, a t/u-slope diagonal (abbr. diag.) over an
arithmetic table means a diagonal that moves u steps toward x-axis
and t steps toward y-axis. In particular if u = 1 then we simply say
it a t-slope diagonal. So the 1-slope diag. is the ordinary diagonal.

Over the negative trinomial table T ′, by S
(t/u)↑
n we mean the t/u-slope

ascending diag. sum starting from e′n,0. We also denote by S
(t/u)↓
n the

t/u-slope descending diag. sum from e′1,n. So for instance, S
(t/1)↑
i =

e′i,0 + e′i−t,1 + e′i−2t,2 + · · · and S
(1/t)↓
j = e′1,j + e′2,j−t + e′3,j−2t + · · · .

Like ui,j + ui,j+1 = ui+1,j+1 in P , the recurrence rules over T and T ′

ei,j−1 + ei,j + ei,j+1 = ei+1,j+1 and e′i,j+1 − e′i+1,j−1 − e′i+1,j = e′i+1,j+1

(?)
are well known. We explore some entries in T ′ to get diagonal sums.

Theorem 1. T ′ = [e′i,j] satisfies the followings.

(1)


e′i,0 = ei,0 = 1

e′i,1 = −ei,1 = −i
e′i,2 = ei−1,2 = (i−1)i

2

(2) e′1,j =


1 if j ≡ 0 (mod 3)

−1 if j ≡ 1 (mod 3)

0 if j ≡ 2 (mod 3)
So e′1,j + e′1,j+1 + e′1,j+2 = 0 for j ≥ 0.

Proof. Clearly e′i+1,0 = 1 = ei+1,0, We notice
e′3,0 = 1 = e3,0, e

′
3,1 = −3 = −e3,1, e′3,2 = 3 = e2,2,

and e′4,0 = 1 = e4,0, e
′
4,1 = −4 = −e4,1, e′4,2 = 6 = e3,2.
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Assume the identities (1) are true for some i. Then the recurrence
rule (?) of T ′ with induction hypothesis shows
e′i+1,1 = e′i,1 − e′i+1,0 = −ei,1 − ei+1,0 = −ei+1,1 = −(i+ 1),
e′i+1,2 = e′i,2 − e′i+1,0 − e′i+1,1 = ei−1,2 − ei+2,0 + ei+1,1

= ei−1,2 − ei,0 + (ei,0 + ei,1) = ei−1,2 + ei,1 = ei,2,

and e′i+1,2 = e′i,2 − e′i+1,0 − e′i+1,1 = (i−1)i
2
− 1 + (i+ 1) = i(i+1)

2
.

Observe the first few entries {1,−1, 0, 1,−1, 0, 1,−1, 0, · · · } in the 1th
row. In fact, from e′1,0 = 1 and e′1,1 = −1 in (1), we have e′1,2 = e′0,2 −
e′1,0− e′1,1 = 0 and e′1,3 = e′0,3− e′1,1− e′1,2 = 1. If we assume the identities
(2) for j < 3k (k ∈ Z) then (1) implies

e′1,j = e′0,j − e′1,j−2 − e′1,j−1 =


0− (−1)− (0) = 1 if j = 3k

0− (0)− 1 = −1 if j = 3k + 1

0− 1− (−1) = 0 if j = 3k + 2

Let us begin to consider 1-slope diag. sums S
(1)↓
j in T ′.

Theorem 2. S
(1)↓
j = −S(1)↓

j−2 , so S
(1)↓
j−3 − S

(1)↓
j−2 + S

(1)↓
j−1 = S

(1)↓
j .

Proof. By Theorem 1 and the recurrence rule (?) of T ′, we have

S
(1)↓
0 = e′1,0 = 1, S

(1)↓
1 = e′1,1 + e′2,0 = −1 + 1 = 0,

S
(1)↓
2 = e′1,2 + e′2,1 + e′3,0 = −1 and S

(1)↓
3 = e′1,3 + e′2,2 + e′3,1 + e′4,0 = 0,

etc. So the first few values are {S(1)↓
j | 0 ≤ j ≤ 7} = {1, 0,−1, 0, 1, 0,−1, 0},

where these satisfy S
(1)↓
j = −S(1)↓

j−2 and S
(1)↓
j = S

(1)↓
j−3 − S

(1)↓
j−2 + S

(1)↓
j−1 .

In general, the 1-slope descending diag. sum starting from e′1,j is

S
(1)↓
j = e′1,j + e′2,j−1 + · · ·+ e′j−1,2 + e′j,1 + e′j+1,0,

and each component can be expressed by the recurrence (?) of T ′ that
e′1,j = e′1,j
e′2,j−1 = e′1,j−1−e′2,j−3−e′2,j−2
e′j−1,2 = e′j−2,2−e′j−1,0−e′j−1,1
e′j,1 = e′j−1,1 −e′j,0
e′j+1,0 = e′j,0
Hence by taking columnwise sum from the above table, we have

S
(1)↓
j = e′1,j + (e′1,j−1 + · · ·+ e′j−1,1 + e′j,0)︸ ︷︷ ︸

S
(1)↓
j−1

− (e′2,j−3 + · · ·+ e′j−1,0)︸ ︷︷ ︸
S
(1)↓
j−2−e′1,j−2

− (e′2,j−2 + · · ·+ e′j−1,1 + e′j,0)︸ ︷︷ ︸
S
(1)↓
j−1−e′1,j−1
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= (e′1,j + e′1,j−1 + e′1,j−2) + S
(1)↓
j−1 − S

(1)↓
j−2 − S

(1)↓
j−1 .

But since e′1,j + e′1,j−1 + e′1,j−2 = 0 by Theorem 1, we have

S
(1)↓
j = S

(1)↓
j−1 −S

(1)↓
j−2 −S

(1)↓
j−1 = −S(1)↓

j−2 , so S
(1)↓
j−3 −S

(1)↓
j−2 +S

(1)↓
j−1 = S

(1)↓
j .

Theorem 3. S
(1/2)↓
j = −S(1/2)↓

j−1 , so S
(1/2)↓
j−3 +S

(1/2)↓
j−2 −S

(1/2)↓
j−1 = S

(1/2)↓
j .

Proof. Each 1/2-slope descending diagonal starting from e′1,j ends at
either 0th or 1th column according to even or odd j. So if j = 2k + r
(r = 0, 1) then

S
(1/2)↓
j = e′1,j + e′2,j−2 + · · ·+ e′k,r+2 + e′k+1,r.

The first few 1/2-slope descending diag. sums {S(1/2)↓
j | 0 ≤ j ≤ 5} of

T ′ are {1,−1, 1,−1, 1,−1}, and it satisfies S
(1/2)↓
j = −S(1/2)↓

j−1 for j ≤ 5.

Assume S
(1/2)↓
j = −S(1/2)↓

j−1 is true for all j < 2k (k ∈ Z). If j = 2k
then
S
(1/2)↓
j = e′1,j + e′2,j−2 + · · ·+ e′k,2 + e′k+1,0

From the recurrence rule (?) in T ′, since
e′1,j = e′1,j
e′2,j−2 = e′1,j−2 −e′2,j−4−e′2,j−3

· · ·
e′k,2 = e′k−1,2−e′k,0 −e′k,1
e′k+1,0 = e′k,0

the columnwise sum of the above table gives rise to

S
(1/2)↓
j = e′1,j + (e′1,j−2 + · · ·+ e′k−1,2 + e′k,0)︸ ︷︷ ︸

S
(1/2)↓
j−2

− (e′2,j−4 + · · ·+ e′k,0)︸ ︷︷ ︸
S
(1/2)↓
j−2 −e′1,j−2

− (e′2,j−3 + · · · e′k,1)︸ ︷︷ ︸
S
(1/2)↓
j−1 −e′1,j−1

= S
(1/2)↓
j−2 − S(1/2)↓

j−2 − S(1/2)↓
j−1 = −S(1/2)↓

j−1 ,

because e′1,j + e′1,j−1 + e′1,j−2 = 0 by Theorem 1.
On the other hand, when j = 2k + 1, due to the following table
e′1,j = e′1,j
e′2,j−2 = e′1,j−2 −e′2,j−4−e′2,j−3

· · ·
e′k,3 = e′k−1,3−e′k,1 −e′k,2
e′k+1,1 = e′k,1 −e′k+1,0

we have
S
(1/2)↓
j = e′1,j + (e′1,j−2 + · · ·+ e′k−1,3 + e′k,1)︸ ︷︷ ︸

S
(1/2)↓
j−2

− (e′2,j−4 + · · ·+ e′k,1)︸ ︷︷ ︸
S
(1/2)↓
j−2 −e′1,j−2
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− (e′2,j−3 + · · ·+ e′k+1,0)︸ ︷︷ ︸
S
(1/2)↓
j−1 −e′1,j−1

= S
(1/2)↓
j−2 −S

(1/2)↓
j−2 −S

(1/2)↓
j−1 = −S(1/2)↓

j−1 .

This implies S
(1/2)↓
j−3 + S

(1/2)↓
j−2 − S(1/2)↓

j−1 = S
(1/2)↓
j .

Theorem 4. S
(1/3)↓
j−3 − S(1/3)↓

j−2 − S(1/3)↓
j−1 = S

(1/3)↓
j .

Proof. Note that 1/3-slope descending diag. starting from e′1,j ends
at 0, 1 or 2th column according to j (mod 3). So when j = 3k + r
(r = 0, 1, 2),

S
(1/3)↓
j = e′1,j + e′2,j−3 + · · ·+ e′k,r+3 + e′k+1,r

We easily see {S(1/3)↓
j | 0 ≤ j ≤ 10}= {1,−1, 0, 2,−3, 1, 4,−8, 5, 7,−20}

and notice a recurrence S
(1/3)↓
j−3 −S

(1/3)↓
j−2 −S

(1/3)↓
j−1 = S

(1/3)↓
j for 0 ≤ j ≤ 10.

We now assume S
(1/3)↓
j−3 − S

(1/3)↓
j−2 − S

(1/3)↓
j−1 = S

(1/3)↓
j is true for j < 3k

(k ∈ Z). If j = 3k then by making a table
e′1,j = e′1,j
e′2,j−3 = e′1,j−3 −e′2,j−5−e′2,j−4

· · ·
e′k,3 = e′k−1,3−e′k,1 −e′k,2
e′k+1,0 = e′k,0

we have

S
(1/3)↓
j = e′1,j + (e′1,j−3 + · · ·+ e′k−1,3 + e′k,0)︸ ︷︷ ︸

S
(1/3)↓
j−3

− (e′2,j−5 + · · ·+ e′k,1)︸ ︷︷ ︸
S
(1/3)↓
j−2 −e′1,j−2

− (e′2,j−4 + · · ·+ e′k,2)︸ ︷︷ ︸
S
(1/3)↓
j−1 −e′1,j−1

= S
(1/3)↓
j−3 − S(1/3)↓

j−2 − S(1/3)↓
j−1 .

Analogously if j = 3k + 1 the with the similar table above we have

S
(1/3)↓
j = e′1,j + (e′1,j−3 + · · ·+ e′k−1,4 + e′k,1)︸ ︷︷ ︸

S
(1/3)↓
j−3

− (e′2,j−5 + · · ·+ e′k,2)︸ ︷︷ ︸
S
(1/3)↓
j−2 −e′1,j−2

− (e′2,j−4 + · · ·+ e′k,3 + e′k+1,0)︸ ︷︷ ︸
S
(1/3)↓
j−1 −e′1,j−1

= S
(1/3)↓
j−3 − S(1/3)↓

j−2 − S(1/3)↓
j−1 .

Finally when j = 3k + 2 we also have

S
(1/3)↓
j = e′1,j+(e′1,j−3 + · · ·+ e′k−1,5 + e′k,2)︸ ︷︷ ︸

S
(1/3)↓
j−3

− (e′2,j−5 + · · ·+ e′k,3 + e′k+1,0)︸ ︷︷ ︸
S
(1/3)↓
j−2 −e′1,j−2
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− (e′2,j−4 + · · ·+ e′k,4 + e′k+1,1)︸ ︷︷ ︸
S
(1/3)↓
j−1 −e′1,j−1

= S
(1/3)↓
j−3 − S(1/3)↓

j−2 − S(1/3)↓
j−1 .

Theorem 5. S
(1/4)↓
j−4 − S(1/4)↓

j−2 − S(1/4)↓
i−1 = S

(1/4)↓
j for all j ≥ 4.

Proof. The S
(1/4)↓
j = {1,−1, 0, 1, 0,−2, 2, 1,−3, 0, 5,−4,−4} satisfy

S
(1/4)↓
j−4 − S

(1/4)↓
j−2 − S

(1/4)↓
i−1 = S

(1/4)↓
j for 0 ≤ j ≤ 12. Any 1/4-slope

descending diag. starting from e′1,j ends at j (mod 4)th column. In
fact, when j = 4k + r (r = 0, 1, 2, 3) we have

S
(1/4)↓
j = e′1,j + e′2,j−4 + · · ·+ e′k,r+4 + e′k+1,r,

and each component satisfies
e′1,j = e′1,j
e′2,j−4 = e′1,j−4 −e′2,j−6 −e′2,j−5

· · ·
e′k,r+4 = e′k−1,r+4−e′k,r+2 −e′k,r+3

e′k+1,r = e′k,r −e′k+1,r−2−e′k+1,r−1
Hence if j = 4k then

S
(1/4)↓
j = e′1,j + (e′1,j−4 + · · ·+ e′k−1,4 + e′k,0)︸ ︷︷ ︸

S
(1/4)↓
j−4

− (e′2,j−6 + · · ·+ e′k,2)︸ ︷︷ ︸
S
(1/4)↓
j−2 −e′1,j−2

− (e′2,j−5 + · · ·+ e′k,3)︸ ︷︷ ︸
S
(1/4)↓
j−1 −e′1,j−1

= S
(1/4)↓
j−4 − S(1/4)↓

j−2 − S(1/4)↓
j−1 .

If j = 4k + 1 then we also have

S
(1/4)↓
j = e′1,j + (e′1,j−4 + · · ·+ e′k−1,5) + e′k,1︸ ︷︷ ︸

S
(1/4)↓
j−4

− (e′2,j−6 + · · ·+ e′k,3)︸ ︷︷ ︸
S
(1/4)↓
j−2 −e′1,j−2

− (e′2,j−5 + · · ·+ e′k,4 + e′k+1,0)︸ ︷︷ ︸
S
(1/4)↓
j−1 −e′1,j−1

= S
(1/4)↓
j−4 − S(1/4)↓

j−2 − S(1/4)↓
j−1 .

Analogously, the recurrence S
(1/4)↓
j = S

(1/4)↓
j−4 − S(1/4)↓

j−2 − S(1/4)↓
j−1 holds

for any j = 4k + r with any 0 ≤ r ≤ 3.

The 1/t-slope descending diag. sum S
(1/t)↓
j (t = 5, 6) are observed

that

{S(1/5)↓
j } = {1,−1, 0, 1,−1, 1,−1, 0, 2,−3, 2, 0,−2, 4}
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{S(1/6)↓
j } = {1,−1, 0, 1,−1, 0, 2,−3, 1, 3,−5, 2, 5,−10}

and notice recurrences S
(1/5)↓
j−5 − S

(1/5)↓
j−2 − S

(1/5)↓
j−1 = S

(5)↓
j and S

(1/6)↓
j−6 −

S
(1/6)↓
j−2 − S(1/6)↓

j−1 = S
(1/6)↓
j for some j. A generalization is as follows.

Theorem 6. S
(1/t)↓
j−t − S

(1/t)↓
j−2 − S

(1/t)↓
j−1 = S

(1/t)↓
j for all j ≥ t ≥ 3.

Proof. The first few S
(1/t)↓
j are

S
(1/t)↓
0 = e′1,0 S

(1/t)↓
t−1 = e′1,t−1 S

(1/t)↓
2t−2 = e′1,2t−2 + e′2,t−2

S
(1/t)↓
1 = e′1,1 S

(1/t)↓
t = e′1,t + e′2,0 S

(1/t)↓
2t−1 = e′1,2t−1 + e′2,t−1

S
(1/t)↓
2 = e′1,2 S

(1/t)↓
t+1 = e′1,t+1 + e′2,1 S

(1/t)↓
2t = e′1,2t + e′2,t + e′3,0

Since e′1,t+1 + e′1,t + e′1,t−1 = 0 in Theorem 1, we have

S
(1/t)↓
t+1 + S

(1/t)↓
t + S

(1/t)↓
t−1 = (e′1,t+1 + e′2,1) + (e′1,t + e′2,0) + e′1,t−1

= e′2,1 + e′2,0 = e′1,1 = S
(t)↓
1 .

And e′1,2t + e′1,2t−1 + e′1,2t−2 = 0 in Theorem 1 imply

S
(1/t)↓
2t + S

(1/t)↓
2t−1 + S

(1/t)↓
2t−2

= (e′1,2t + e′2,t + e′3,0) + (e′1,2t−1 + e′2,t−1) + (e′1,2t−2 + e′2,t−2)

= (e′1,2t + e′1,2t−1 + e′1,2t−2) + (e′2,t + e′2,t−1) + e′2,t−2) + e′3,0

= (e′2,t + e′2,t−1) + e′2,t−2) + e′3,0 = e′1,t + e′2,0 = S
(t)↓
t .

Now we assume S
(1/t)↓
j−t − S

(1/t)↓
j−2 − S

(1/t)↓
j−1 = S

(1/t)↓
j for j < kt (k ∈ Z).

Let t = kt+ r (0 ≤ r < t). Then by making use of the table

e′1,j = e′1,j
e′2,j−t = e′1,j−t −e′2,j−t−2 −e′2,j−t−1

· · ·
e′k,t+r = e′k−1,t+r−e′k,t+r−2 −e′k,t+r−1
e′k+1,r = e′k,r −e′k+1,r−2−e′k+1,r−1

we have

S
(1/t)↓
j = e′1,j + e′2,j−t + · · ·+ e′k,t+r + e′k+1,r

= e′1,j+(e′1,j−t + · · ·+ e′k−1,t+r + e′k,r)︸ ︷︷ ︸
S
(1/t)↓
j−t

− (e′2,j−t−2 + · · ·+ e′k+1,r−2)︸ ︷︷ ︸
S
(1/t)↓
j−2 −e′1,j−2

− (e′2,j−t−1 + · · ·+ e′k+1,r−1)︸ ︷︷ ︸
S
(1/t)↓
j−1 −e′1,j−1

= S
(1/t)↓
j−t − S

(1/t)↓
j−2 − S

(1/t)↓
j−1 .
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3. Reflected sequence of diagonal sums

Table 1 is about sequences of 1/t-slope descending diag. sums S
(1/t)↓
n

of T ′ satisfying S
(1/t)↓
j−t − S

(1/t)↓
j−2 − S

(1/t)↓
j−1 = S

(1/t)↓
j for all j ≥ t ≥ 3.

Table 1. S
(1/t)↓
n (3 ≤ t ≤ 8)

t\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1−1 0 2−3 1 4−8 5 7−20 18 9−47
4 1−1 0 1 0−2 2 1−3 0 5−4−4 8
5 1−1 0 1−1 1−1 0 2−3 2 0−2 4
6 1−1 0 1−1 0 2−3 1 3 −5 2 5−10
7 1−1 0 1−1 0 1 0−2 2 1−4 3 2

Refer A077889, A247920 OEIS to {S(1/t)↓
j } with t = 4, 5. If we display

the numbers in {S(1/3)↓
n } in reverse order then {· · · , 5,−8, 4, 1,−3, 2, 0,−1, 1}

corresponds to the negative indexed part of the extended tribonacci se-
quence { · · · , 5 ,−8 , 4 , 1 ,−3 , 2 , 0 ,−1 , 1 , 0, 0, 1, 1, 2, 4, 7, · · · }. The re-

arranged sequence of {S(1/t)↓
n } (t ≥ 3) in reverse order will be called the

reflected sequence and denoted by {Ŝ(1/t)↓
n | n ∈ Z}.

Table 2. Ŝ
(1/t)↓
n (3 ≤ t ≤ 6)

t\n−5−4−3−2−101234567 8 91011 12 13 14 15 16 17 18

3 1−3 2 0−11001124713244481149274504927170531365768
4−2 0 1 0−110001011 2 2 4 5 8 11 17 24 36 52 77
5 1−1 1 0−110000100 1 1 1 1 2 3 3 4 6 8 10
6 0−1 1 0−110000010 0 0 1 1 1 0 1 2 3 2 2

So the reflected sequence {Ŝ(1/3)↓
n | n ∈ Z} is the extended tribonacci

sequence satisfying Ŝ
(1/3)↓
n−3 + Ŝ

(1/3)↓
n−2 + Ŝ

(1/3)↓
n−1 = Ŝ

(1/3)↓
n for n ∈ Z.

Theorem 7. For t ≥ 3, a recurrence rule is Ŝ
(1/t)↓
n+t = Ŝ

(1/t)↓
n+2 +Ŝ

(1/t)↓
n+1 +

Ŝ
(1/t)↓
n , and the limit of Ŝ

(1/t)↓
n

Ŝ
(1/t)↓
n−1

in {Ŝ(1/t)↓
n | n ∈ Z} is a real root of

xt − x2 − x− 1 = 0.

Proof. From the recurrence S
(1/t)↓
j−t = S

(1/t)↓
j−2 + S

(1/t)↓
j−1 + S

(1/t)↓
j , if we

consider j = −n (n > 0) then S
(1/t)↓
−(n+t) = S

(1/t)↓
−(n+2) + S

(1/t)↓
−(n+1) + S

(1/t)↓
−n , so

we have

Ŝ
(1/t)↓
n+t = Ŝ

(1/t)↓
n+2 + Ŝ

(1/t)↓
n+1 + Ŝ

(1/t)↓
n for any n ∈ Z.

By dividing the both sides of the recurrence by Ŝ
(1/t)↓
n−1 we have
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Ŝ
(1/t)↓
n

Ŝ
(1/t)↓
n−1

= 1

Ŝ
(1/t)↓
n−1

Ŝ
(1/t)↓
n−t+2

+ 1

Ŝ
(1/t)↓
n−1

Ŝ
(1/t)↓
n−t+1

+ 1

Ŝ
(1/t)↓
n−1

Ŝ
(1/t)↓
n−t

.

So if let r = lim
n→∞

Ŝ
(1/t)↓
n

Ŝ
(1/t)↓
n−1

then r = 1
rt−3 + 1

rt−2 + 1
rt−1 , and r is a real root

of the polynomial xt − x2 − x− 1 = 0.

An interesting connection of Ŝ
(1/t)↓
n with trinomial table T is as fol-

lows.

Theorem 8. Let rk (k ≥ 0) be the kth row of T . Then inner product

of rk and 2k+1 consecutive terms {Ŝ(1/t)↓
n } yields (Ŝ

(1/t)↓
n−2k , · · · , Ŝ

(1/t)↓
n−1 , Ŝ

(1/t)↓
n )◦

rk = Ŝ
(1/t)↓
n+(t−2)k.

Proof. Let t = 3. Clearly (Ŝ
(1/3)↓
n−2 , Ŝ

(1/3)↓
n−1 , Ŝ

(1/3)↓
n ) ◦ r1 = Ŝ

(1/3)↓
n+1 , for

r1 = (1, 1, 1).
Since r2 = (1, 2, 3, 2, 1) = (1, 1, 1, 0, 0) + (0, 1, 1, 1, 0) + (0, 0, 1, 1, 1) by

(?), if we write it by r2 = (r1, 0, 0) + (0, r1, 0) + (0, 0, r1) then

(Ŝ
(1/3)↓
n−4 , Ŝ

(1/3)↓
n−3 , Ŝ

(1/3)↓
n−2 , Ŝ

(1/3)↓
n−1 , Ŝ

(1/3)↓
n ) ◦ r2

= (Ŝ
(1/3)↓
n−4 , Ŝ

(1/3)↓
n−3 , Ŝ

(1/3)↓
n−2 ) ◦ r1 + (Ŝ

(1/3)↓
n−3 , Ŝ

(1/3)↓
n−2 , Ŝ

(1/3)↓
n−1 ) ◦ r1

+ (Ŝ
(1/3)↓
n−2 , Ŝ

(1/3)↓
n−1 , Ŝ

(1/3)↓
n ) ◦ r1

= Ŝ
(1/3)↓
n−1 + Ŝ

(1/3)↓
n + Ŝ

(1/3)↓
n+1 = Ŝ

(1/3)↓
n+2

by Theorem 7. Assume the identity in the theorem is true with respect
to rk−1. Since rk equals (rk−1, 0, 0) + (0, rk−1, 0) + (0, 0, rk−1), we have

(Ŝ
(1/3)↓
n−2k , Ŝ

(1/3)↓
n−2k+1, · · · , Ŝ

(1/3)↓
n−1 , Ŝ

(1/3)↓
n ) ◦ rk

= (Ŝ
(1/3)↓
n−2k , · · · , Ŝ

(1/3)↓
n−2 ) ◦ rk−1 + (Ŝ

(1/3)↓
n−2k+1, · · · , Ŝ

(1/3)↓
n−1 ) ◦ rk−1

+ (Ŝ
(1/3)↓
n−2k+2, · · · , Ŝ

(1/3)↓
n ) ◦ rk−1

= Ŝ
(1/3)↓
n−2+(k−1) + Ŝ

(1/3)↓
n−1+(k−1) + Ŝ

(1/3)↓
n+(k−1) = Ŝ

(1/3)↓
n+(k−1)+1 = Ŝ

(1/3)↓
n+(t−2)k,

by the induction hypothesis and Theorem 7.
When t = 4, we also can see from Theorem 7 that

(Ŝ
(1/4)↓
n−2 , Ŝ

(1/4)↓
n−1 , Ŝ

(1/4)↓
n ) ◦ r1

= Ŝ
(1/4)↓
n−2 + Ŝ

(1/4)↓
n−1 + Ŝ

(1/4)↓
n = Ŝ

(1/4)↓
n+2 = Ŝ

(1/4)↓
n+(t−2),

and also
(Ŝ

(1/4)↓
n−4 , Ŝ

(1/4)↓
n−3 , Ŝ

(1/4)↓
n−2 , Ŝ

(1/4)↓
n−1 , Ŝ

(1/4)↓
n ) ◦ r2

= (Ŝ
(1/4)↓
n−4 , Ŝ

(1/4)↓
n−3 , Ŝ

(1/4)↓
n−2 ) ◦ r1 + (Ŝ

(1/4)↓
n−3 , Ŝ

(1/4)↓
n−2 , Ŝ

(1/4)↓
n−1 ) ◦ r1

+ (Ŝ
(1/4)↓
n−2 , Ŝ

(1/4)↓
n−1 , Ŝ

(1/4)↓
n ) ◦ r1

= Ŝ
(1/4)↓
n + Ŝ

(1/4)↓
n+1 + Ŝ

(1/4)↓
n+2 = Ŝ

(1/4)↓
n+4 = Ŝ

(1/4)↓
n+(t−2)2.
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Now assume (Ŝ
(1/t)↓
n−2(k−1), · · · , Ŝ

(1/t)↓
n−1 , Ŝ

(1/t)↓
n ) ◦ rk−1 = Ŝ

(1/t)↓
n+(t−2)(k−1) for

any t ≥ 3 and k > 1. Then

(Ŝ
(1/t)↓
n−2k , Ŝ

(1/t)↓
n−2k+1, · · · , Ŝ

(1/t)↓
n−1 , Ŝ

(1/t)↓
n ) ◦ rk

= (Ŝ
(1/t)↓
n−2k , · · · , Ŝ

(1/t)↓
n−2 ) ◦ rk−1 + (Ŝ

(1/t)↓
n−2k+1, · · · , Ŝ

(1/t)↓
n−1 ) ◦ rk−1

+ (Ŝ
(1/t)↓
n−2k+2, · · · , Ŝ

(1/t)↓
n ) ◦ rk−1

= Ŝ
(1/t)↓
n−2+(t−2)(k−1) + Ŝ

(1/t)↓
n−1+(t−2)(k−1) + Ŝ

(1/t)↓
n+(t−2)(k−1)

= Ŝ
(1/t)↓
n−2+(t−2)(k−1)+t = Ŝ

(1/t)↓
n+(t−2)k,

by Theorem 7. This finishes the proof.

Since {Ŝ(1/3)↓
n | n ∈ Z} corresponds to the extended tribonacci se-

quence, the numbers Ŝ
(1/3)↓
n (n ≥ 1) can be graphically explained by

1/1-slope ascending diag. sums of T , while Ŝ
(1/3)↓
n (n ≤ 0) are 1/3-slope

descending diag. sums of T ′. Then it is natural to ask graphical descrip-

tion of Ŝ
(1/t)↓
n (n ≥ 1) over T for any t ≥ 3. For this purpose, similar

to S
(t/u)↑
n and S

(t/u)↓
n over T ′, we shall use notations σ

(t/u)↑
i and σ

(t/u)↓
j

over T . The former means the t/u-slope ascending diag. sum starting
from ei,0 while the latter is the descending diag. sum starting from e0,j
over T . For instance σ

(t)↑
i = σ

(t/1)↑
i = ei,0 + ei−t,1 + ei−2t,2 + · · · and

σ
(1/t)↓
j = e0,j + e1,j−t + e2,j−2t + · · · .

Theorem 9. Ŝ
(1/3)↓
n = σ

(1)↓
n−3 = σ

(1)↑
n−3. And Ŝ

(1/4)↓
n = σ

(1/2)↓
n−4 .

Proof. The 1-slope descending diag. sums over T clearly satisfy {σ(1)↓
n−3 |

n ≥ 3} = {1, 1, 2, 4, 7, 13, · · · } = {σ(1)↑
n−3 | n ≥ 3}, which is the tribonacci

numbers. So by {Ŝ(1/3)↓
n } = {1, 1, 2, 4, 7, · · · } in Table 2, the proof of the

first identity is clear.
The first few numbers of 1/2-slope descending diag. sums over T are

{σ(1/2)↓
n−4 | n ≥ 4} = {1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, · · · },

where this equals {Ŝ(1/4)↓
n } = {1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, · · · } (see Table

2). In fact, σ
(1/2)↓
10 = e0,10 + e1,8 + e2,6︸ ︷︷ ︸

0

+ e3,4 + e4,2 + e5,0︸ ︷︷ ︸
17

= Ŝ
(1/4)↓
14 . Since

the first few numbers in sequences {Ŝ(1/4)↓
n } and {σ(1/2)↓

n−4 } correspond

each other, it is enough to show that {σ(1/2)↓
j } satisfies the recurrence

σ
(1/2)↓
j + σ

(1/2)↓
j+1 + σ

(1/2)↓
j+2 = σ

(1/2)↓
j+4 , that is the same pattern of Ŝ

(1/4)↓
n in

Theorem 7. In fact,
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σ
(1/2)↓
j + σ

(1/2)↓
j+1 + σ

(1/2)↓
j+2

= (e0,j + e1,j−2 + e2,j−4 + · · · ) +(e0,j+1 + e1,j−1 + e2,j−3 + · · · )
+ (e0,j+2 + e1,j + e2,j−2 + · · · ).

Then by considering each columnwise sum, we have

σ
(1/2)↓
j + σ

(1/2)↓
j+1 + σ

(1/2)↓
j+2 = e1,j+2 + e2,j + e3,j−2 + e4,j−5 + · · ·

= e0,j+4 + (e1,j+2 + e2,j + e3,j−2 + e4,j−5 + · · · ) = σ
(1/2)↓
j+4 ,

because e0,j+4 = 0 for all j ≥ 0 and the recurrence (?) of T .

Clearly σ
(1)↓
11 = e0,11 + · · ·+ e3,8︸ ︷︷ ︸+ e4,7 + e5,6 + · · ·+ e11,0︸ ︷︷ ︸

4+45+126+161+112+45+10+1=504

= Ŝ
(1/3)↓
14 .

Let σ
(1/2)↑
(a,b) and σ

(1/2)↓
(a,b) be 1/2-slope ascending and descending diag. sums

starting from the component ea,b of T . The next theorem further ex-

plains Ŝ
(1/4)↓
n in relation to certain 1/2-slope diag. in T .

Theorem 10. Ŝ
(1/4)↓
n = σ

(1/2)↓
(0,n−4) =

σ
(1/2)↑
(n−4

2
,0)

if n ≡ 0 (mod 2)

σ
(1/2)↑
(n−5

2
,1)

if n ≡ 1 (mod 2)
.

Proof. Since σ
(1/2)↓
(0,n−4) = σ

(1/2)↓
n−4 , the first equality is due to Theorem 9.

Now we look at a 1/2-slope descending diag. sum in T , for example,

σ
(1/2)↓
(0,12) = e0,12 + e1,10 + e2,8︸ ︷︷ ︸ + e3,6 + · · ·+ e6,0︸ ︷︷ ︸

1+19+15+1=36

= Ŝ
(1/4)↓
4+12 . Also it can be

explained as the increasing diagonal sum e6,0 + e5,2 + e4,4 + e3,6 = 36 =

σ
(1/2)↑
(6,0) .

Table 3. σ
(1/2)↑
(n−4

2
,0)

n = 4 σ
(1/2)↑
(0,0) = 1 = Ŝ

(1/4)↓
6

6 σ
(1/2)↑
(1,0) = 1 = Ŝ

(1/4)↓
8

8 σ
(1/2)↑
(2,0) = 1 + 1 = Ŝ

(1/4)↓
10

10 σ
(1/2)↑
(3,0) = 1 + 6 + 1 = Ŝ

(1/4)↓
12

12 σ
(1/2)↑
(4,0) = 1 + 10 + 6 = Ŝ

(1/4)↓
14

Table 4. σ
(1/2)↑
(n−5

2
,1)

n = 5 σ
(1/2)↑
(0,1) = 0

7 σ
(1/2)↑
(1,1) = 1

9 σ
(1/2)↑
(2,1) = 2

11 σ
(1/2)↑
(3,1) = 3 + 2 = 5

13 σ
(1/2)↑
(4,1) = 4 + 7 = 11

In case of n = 2k ≥ 4, the first few numbers σ
(1/2)↑
(n−4

2
,0)

are in Table 3,

where it shows {σ(1/2)↑
(n−4

2
,0)
} = {1, 1, 2, 4, 8, 17, 36, 77, 165, · · · } = {Ŝ(1/4)↓

n |
n : even}.
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Similarly when n = 2k+1 ≥ 4, the first few numbers σ
(1/2)↑
(n−5

2
,1)

are in Ta-

ble 4, where it shows that {σ(1/2)↑
(n−5

2
,1)
} = {0, 1, 2, 5, 11, 24, 52, 112, 241, · · · } =

{Ŝ(1/4)↓
n | n : odd}. This completes the proof

In fact Theorem 10 corresponds to the following table.

Ŝ
(1/4)↓
n with σ

(1/2)↑
(a,b)

n 4 5 6 7 8 9 · · ·
Ŝ
(1/4)↓
n 1 = σ

(1/2)↑
(0,0) 0 = σ

(1/2)↑
(0,1) 1 = σ

(1/2)↑
(1,0) 1 = σ

(1/2)↑
(1,1) 2 = σ

(1/2)↑
(2,0) 2 = σ

(1/2)↑
(2,1)
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