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A NOTE ON DERIVATIONS OF ORDERED

Γ-SEMIRINGS

Kyung Ho Kim

Abstract. In this paper, we consider derivation of an ordered Γ-
semiring and introduce the notion of reverse derivation on ordered
Γ-semiring. Also, we obtain some interesting related properties. Let
I be a nonzero ideal of prime ordered Γ-semiring M and let d be
a nonzero derivation of M. If Γ-semiring M is negatively ordered,
then d is nonzero on I.

1. Introduction

A semiring is an algebraic structure with two binary operations called
addition and multiplication where one of them distributive over the
other. A semiring is a common generalization of rings and distributive
lattices and was first introduced by Vandiver([10)] 1934 but nontrivial
examples of semiring have appeared in the earlier studies on the theory
of commutative ideals of rings by Richard Dedekind 19th centrary The
notion of a Γ-ring was introduced by Nobusawa([7)] as a generalization
of ring 1981. Sen([9]) introduced the concept of a Γ semigroup in 1981.
In 1995, M. K. Rao([4, 5]) introduced the notion of Γ-semiring which
is a generalization Γ-ring, ring and semiring. Over the last few decades
serval authors have investigates the relationship between the commuta-
tivity of ring R and the existence of certain specified derivation of R.
The first result in this relation is due to Posner([8)] in 1957. In the 1990,
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Bresar and Vukman([1]) established that a prime ring must be commu-
tative if it admits a nonzero left derivation. Kim([2, 3]) studied right
derivations and generalized right derivations of incline algebras. M. K.
Rao([6]) introduced the notion of right derivation in ordered Γ-semirings
and generalized right derivations of ordered Γ-semirings. In this paper,
we consider derivations of ordered Γ-semirings and introduced the no-
tion of reverse derivations on ordered Γ-semirings. Also, we obtain some
interesting related properties. Let I be a nonzero ideal of prime ordered
Γ-semiring M and let d be a nonzero derivation of M. If Γ-semigroup M
is negatively ordered, then d is nonzero on I.

2. Preliminaries

Definition 2.1. A set S together with two associative binary opera-
tions called addition and multiplication (denoted by + and · respectively)
will be called a semiring if

(1) : (S,+) is commutative.
(2) : x(y + z) = xy + xz and (x+ y)z = xz + yz for all x, y, z ∈ S
(3) : there exists 0 ∈ S such that x + 0 = x and x + 0 = x and

x · 0 = 0 · x = 0 for all x ∈ S.

Definition 2.2. Let (M,+) and (Γ,+) be commutative semigroups.
Then M is called a Γ-semiring if there exists a mapping M×Γ×M →M,
where (x, α, y) = xαy such that it satisfies the following axioms for any
x, y, z ∈M and α, β ∈ Γ,

(1) : xα(y + z) = xαy + xαz
(2) : (x+ y)αz = xαz + yαz
(3) : x(α + β)y = xαy + xβy
(4) : xα(yβz) = (xαy)βz.

Every semiring S is a Γ-semiring with Γ = S, where the ternary
operation is the usual semiring multiplication.

Example 2.3. Let S be a semiring and Mp,q(S) denote the addition
abelian semigroup of all p × q matrices with identity element whose
entries are from S. Then Mp,q(S) is a Γ-semiring with Γ = Mp,q(S).
A ternary operation is defined by xαz = x(αt)z as the usual matrix
multiplication, where αt denotes the transpose of the matrix α, for all
x, y and α ∈ Γ.
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A Γ-semiring M is said to have a zero element if there exists an
element 0 ∈ M such that 0 + x = x + 0 = x and 0αx = xα0 = 0 for
all x ∈ M and α ∈ Γ. A Γ-semiring M is said to be commutative if
xαy = yαx for all x, y ∈M and α ∈ Γ. An element a ∈M is said to be
idempotent if there exists α ∈ Γ such that a = aαa and a+a = a. If every
element of M is an idempotent of M, then M is called an idempotent
Γ-semiring. An element 1 ∈ M is said to be unity if for each x ∈ M,
there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.4. Let M be an ordered Γ-semiring.

(1) : (M,+) is positively ordered if a+ b ≥ a, b for all a, b ∈M
(2) : (M,+) is negatively ordered if a+ b ≤ a, b for all a, b ∈M
(3) : A Γ-semigroup M is positively ordered if aαb ≥ a, b for all a, b ∈

M and α ∈ Γ
(4) : A Γ-semigroup M is negatively ordered if aαb ≤ a, b for all a, b ∈

M and α ∈ Γ.

Definition 2.5. An Γ-semiring M is called an ordered Γ-semiring if
it admits a compatible relation ≤, that is, ≤ is a partial ordering on M
which satisfies the following conditions,

(1) : If a ≤ b and c ≤ d, then a+ c ≤ b+ d
(2) : If a ≤ b and c ≤ d, then aαc ≤ bαd
(3) : If a ≤ b and c ≤ d, then cαa ≤ dαb, for all a, b, c ∈M and α ∈ Γ

Example 2.6. Let M = [0, 1],Γ = N, x+ y = max{x, y} and xαy =
min{x, α, y} for all x, y ∈ M and α ∈ Γ. Then M is an ordered Γ-
semiring with respect to the usual ordering (see[6]).

Definition 2.7. A nonempty subset A of ordered Γ-semiring M is
called a Γ-subsemiring if (A,+) is a subsemigroup of (M,+) and aαb ∈
A for all a, b ∈ A and α ∈ Γ. A nonempty subset I of ordered Γ-semiring
M is called a left ideal (right ideal) of M if for any a ∈M and b ∈ I,

(1) : I is closed under addition
(2) : MΓI ⊆ I(AΓM ⊆ I)
(3) : a ≤ b and b ∈ I implies a ∈ I.

A nonempty subset I of ordered Γ-semiring M is called ideal of M if
it is both a left ideal and a right ideal of M. A nonempty subset I of
ordered Γ-semiring M is called k-ideal of M if I is an ideal and x+y ∈ I
and y ∈ I implies x ∈ I for any x ∈M.
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Definition 2.8. Let M be an ordered Γ-semiring. A Γ-subsemiring
P of M is said to be prime ideal of M if

(1) : a ≤ b and b ∈ P implies a ∈ P for any a ∈M
(2) : aαb ∈ P implies a ∈ P or b ∈ P for all a, b ∈M and α ∈ Γ.

Definition 2.9. Let M be an ordered Γ-semiring. An element a ∈M
is said to be additively left cancellative if for all b, c ∈M, a+b = a+c⇒
b = c. An element a ∈M is said to be additively right cancellative if for
all b, c ∈M, b+a = c+a⇒ b = c. It is said to be additively cancellative if
it is both left and right cancellative. If every element of M is additively
left cancellative, it is said to be additively left cancellative. If every
element of M is additively right cancellative, it is said to be additively
right cancellative.

3. Derivations in ordered Γ-semirings

In what follows, let M denote an ordered Γ-semiring unless otherwise
specified.

Definition 3.1. Let M be an ordered Γ-semiring. If the mapping
d : M →M satisfies the following conditions

(1) : d(x+ y) = d(x) + d(y)
(2) : d(xαy) = d(x)αy + xαd(y)
(2) : If x ≤ y, then d(x) ≤ d(y) for all x, y ∈M and α ∈ Γ,

then d is called a derivation on M.

Example 3.2. Let M =

{(
a 0
b c

)
: a, b, c ∈ Q

}
, where Q is the set

of rational numbers and Γ =

{(
a 0
b a

)
: a, b, c ∈ N

}
, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups
with respect to the usual matrix addition of 2×2 matrices and a ternary
operation, which is defined as M × Γ×M by (x, α, y)→ xαy using the
usual matrix multiplication for all x, y ∈ M and α ∈ Γ. Let A = (aij)
and B = (bij) ∈ M, we define A ≤ B ⇔ aij ≤ bij for all i, j. Then M is
an ordered Γ-semiring. Define a map d : M →M given by

d

((
a 0
b c

))
=

(
0 0
b 0

)
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Then d is a derivation on M.

Proposition 3.3. Let M be a commutative ordered Γ-semiring. If
M is additive idempotent, then for a fixed a ∈ M and α ∈ Γ, the
mapping da : M → M given by da(x) = x ◦ a for all x ∈ M, where
x ◦ a = xαa+ aαx is a derivation of M.

Proof. Let M be a commutative ordered Γ-semiring. Then for a fixed
a ∈M and α ∈ Γ,

da(x+ y) = (x+ y) ◦ a = (x+ y)αa+ aα(x+ y)

= xαa+ yαa+ (x+ y)αa

= xαa+ yαa+ xαa+ yαa

= xαa+ yαa+ aαx+ aαy

= (xαa+ aαx) + (yαa+ aαy)

= x ◦ a+ y ◦ a
= da(x) + da(y)

for all x, y ∈M. Also we have for all x, y ∈M and α ∈ Γ,

da(xαy) = (xαy) ◦ a = (xαy)αa+ aα(xαy)

= (xαy)αa+ (xαy)αa

= (xαy)αa+ (xαy)αa = (xαy)αa

and

da(x)αy + xαda(y) = (xαa+ aαx)y + xα(yαa+ αay)

= (xαa+ aαx)αy + (yαa+ aαy)αx

= (xαa)αy + (aαx)αy + (yαa)αx+ (aαy)αx

= (xαy)αa+ (xαy)αa+ (xαy)αa+ (xαy)αa,

= (xαy)αa,

which implies da(xαy) = da(x)αy + xαda(y).
Finally, let x, y ∈M be such that x ≤ y. Then we have for any α ∈ Γ,

we have

x ≤ y ⇒ xαa ≤ yαa

⇒ xαa+ xαa ≤ yαa+ yαa

⇒ xαa+ aαx ≤ yαa+ aαy

⇒ da(x) ≤ da(y).
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Hence da is a derivation of M.

Proposition 3.4. Let M be a commutative ordered Γ-semiring.
Then da+b = da + db for all a, b ∈M and α ∈ Γ.

Proof. Let M be a commutative ordered Γ-semiring and a, b ∈ M.
Then for all c ∈M and α ∈ Γ, we have

da+b(c) = (a+ b) ◦ c = (a+ b)αc+ cα(a+ b)

= (a+ b)αc+ (a+ b)αc = aαc+ bαc+ aαc+ bαc

= aαc+ bαc+ cαa+ cαb = (aαc+ cαa) + (bαc+ cαb)

= (a ◦ c) + (b ◦ c) = da(c) + db(c)

= (da + db)(c).

Proposition 3.5. Let M be an ordered Γ-semiring. If d is a deriva-
tion of M, then we have d(0) = 0.

Proof. Let M be an ordered Γ-semiring. For any α ∈ Γ, we have

d(0) = d(0α0) = d(0)α0 + 0αd(0) = 0 + 0 = 0.

This completes the proof.

Proposition 3.6. Let M be a commutative ordered Γ-semiring. A
sum of two derivations of M is again a derivation of M.

Proof. Let d1 and d2 be two derivations of M, respectively. Then we
have for all a, b ∈M and α ∈ Γ,

(d1 + d2)(a+ b) = d1(a+ b) + d2(a+ b)

= d1(a) + d1(b) + d2(a) + d2(b)

= (d1(a) + d2(a)) + (d1(b) + d2(b))

= (d1 + d2)(a) + (d1 + d2)(b)

and

(d1 + d2)(aαb) = d1(aαb) + d2(aαb)

= d1(a)αb+ aαd1(b) + d2(a)αb+ aαd2(b)

= d1(a)αb+ d2(a)αb+ aαd1(b) + aαd2(b)

= (d1 + d2)(a)αb+ aα(d1 + d2)(b).

Clearly, x ≤ y implies (d1 + d2)(x) ≤ (d1 + d2)(y) for any x, y ∈M. This
completes the proof.
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Theorem 3.7. Let M be a commutative ordered Γ-semiring let d1, d2
be derivations of M, respectively. Define d1d2(x) = d1(d2(x)) for all
x ∈ K. If d1d2 = 0, then d2d1 is a derivation of M.

Proof. Let d1d2 = 0. For every x, y ∈M and α ∈ Γ, then we have

0 = d1d2(xαy) = d1(d2(x)αy + xαd2(y))

= d1d2(x)αy + d2(x)αd1(y) + d1(x)αd2(y) + xαd1(d2(y))

= d2(x)αd1(y) + d1(x)αd2(y).

Then

d2d1(xαy) = d2(d1(x)αy + xαd1(y))

= d2d1(x)αy + d1(x)αd2(y) + d2(x)αd1(y) + xαd2(d1(y))

= d2d1(x)αy + xαd2d1(y).

Also, for all x, y ∈ K, we get

d2d1(x+ y) = d2(d1(x) + d1(y)) = d2d1(x) + d2d1(y).

Finally, x ≤ y implies d2(d1(x)) ≤ d2(d1(x)). This implies that d2d1 is a
derivation of M.

Proposition 3.8. Let d be a derivation of the idempotent commu-
tative ordered Γ-semiring M. If M is negatively ordered, then d(x) ≤ x
for all x ∈M.

Proof. Let d be a derivation of the idempotent commutative ordered
Γ-semiring M. Then we have

d(x) = d(xαx) = d(x)αx+ xαd(x)

= d(x)αx+ d(x)αx = d(x)αx ≤ x

for all x ∈M and α ∈ Γ.

Proposition 3.9. Let d be a derivation of a prime ordered Γ-semiring
M and a ∈M. If aαd(x) = 0 for all x ∈M and α ∈ Γ, then either a = 0
or d(x) = 0.

Proof. Let aαd(x) = 0 for all x ∈M and α ∈ Γ. Replacing x by xαy,
then we have

0 = aαd(xαy) = aα(d(x)αy + xαd(y))

= aαd(x)αy + aαxαd(y)

= aαxαd(y)
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for all x, y ∈ M and α ∈ Γ. Since M is prime, if d(y) 6= 0 for some
y ∈M, we have a = 0.

Proposition 3.10. LetM be an idempotent prime ordered Γ-semiring
and let d be a derivation on M. Define d2(x) = d(d(x)) for all x ∈M. If
d2 = 0, then d is zero.

Proof. Let x, y ∈M and α ∈ Γ. Then we have

0 = d2(xαy) = d(d(x)αy + xαd(y))

= d2(x)αy + d(x)αd(y) + d(x)αd(y) + xαd2(y)

= d(x)αd(y) + d(x)αd(y)

= d(x)αd(y)

By Proposition 3.9, we have d = 0.

Proposition 3.11. Let M be an additively cancellative ordered Γ-
semiring and let d1 and d2 be derivations ofM.Define d1d2(x) = d1(d2(x))
for all x ∈M. If d1d2 is also a derivation of M, then

d2(x)d1(y) + d1(x)d2(y) = 0

for all x, y ∈M and α ∈ Γ.

Proof. Since d1 and d2 are derivations of M, we have for all x, y ∈M
and α ∈ Γ,

d1d2(xαy) = d1(d2(xαy))(1)

= d1(d2(x)αy + xαd2(y))

= d1d2(x)αy + d2(x)αd1(y) + d1(x)αd2(y) + xαd1d2(y).

Since d1d2 is also a derivation of M, we have

d1d2(xαy) = d1d2(x)αy + xαd1d2(y).(2)

Combining (1) and (2) yields

d2(x)αd1(y) + d1(x)αd2(y) = 0

for all x, y ∈M and α ∈ Γ.

Proposition 3.12. Let I be a nonzero ideal of prime ordered Γ-
semiring M and let d be a nonzero derivation of M. If an Γ-semigroup
M is negatively ordered, then d is nonzero on I.
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Proof. Let d = 0 be on I and x ∈ I. Then d(x) = 0 for all x ∈ I.
Also, let y ∈M. Since xαy ≤ x and I is an ideal of M, we have xαy ∈ I,
Therefore, d(xαy) = 0, that is,

0 = d(xαy) = d(x)αy + xαd(y) = xαd(y).

Since M is prime, we get x = 0 for all x ∈ I or d(y) = 0 for all y ∈ M.
Since I 6= 0, we have d(y) = 0 for all y ∈ M. This is a contradiction by
hypothesis. So, d is nonzero on I.

Theorem 3.13. Let M be an additively cancellative prime ordered
Γ-semiring and let d be a nonzero derivation on M. If [a, d(M)] = (0),
where [a, x]α = aαx−xαa for all x, a ∈M, then a ∈ Z, the center of M.

Proof. By hypothesis, we have [a, d(x)]α = 0 for all x ∈M. Replacing
x by aαx for all x and α ∈ Γ, we have [a, d(aαx)] = 0. Hence we get

0 = [a, d(a)αx+ aαd(x)]α(3)

= [a, d(a)αx]α + [a, aαd(x)]α

= d(a)α[a, x]α + [a, d(a)]ααx+ aα[a, d(x)]α + [a, a]ααd(x).

By using the hypothesis and the fact that [a, a]α = 0 for all a ∈ M, we
have d(a)α[a, x]α = 0.Also, replacing x by xβy, we have d(a)ΓMΓ[a, y]α =
(0) for all y ∈ M. Since M is prime and d 6= 0, we have [a, y]α = 0 for
all y ∈M. Hence we have a ∈ Z, the center of M.

Theorem 3.14. Let M be an additively cancellative prime ordered Γ-
semiring and let d be a nonzero derivation on M. Then M is commutative
ordered Γ-semiring.

Proof. Let a, b ∈M and α ∈ Γ. Then we have

d(aαbαa) = d(a)αbαa+ aαd(bαa)(4)

= d(a)αbαa+ aα(d(b)αa+ bαd(a))

= d(a)αbαa+ aαd(b)αa+ bαaαd(a)

and

d(aαbαa) = d(aαb)αa+ aαbαd(a)(5)

= (d(a)αb+ aαd(b))αa+ aαbαd(a)

= d(a)αbαa+ aαd(b)αa+ aαbαd(a)

From (4) and (5), we have aαbαd(a) = bαaαd(a), that is, [a, b]ααd(a) =
0. Also, replacing b by cαb in this relation, we have [a, c]ααbαd(a) = 0 for



788 K. H. Kim

all a, b, c ∈M and α ∈ Γ. Since M is prime and d 6= 0, we get [a, c]α = 0.
This implies that M is a commutative ordered Γ-semiring.

4. Reverse derivations in ordered Γ-semirings

Definition 4.1. Let M be an ordered Γ-semiring. If the mapping
d : M →M satisfies the following conditions

(1) : d(x+ y) = d(x) + d(y)
(2) : d(xαy) = d(y)αx+ yαd(x)
(3) : If x ≤ y, then d(x) ≤ d(y) for all x, y ∈M and α ∈ Γ,

then d is a reverse derivation of M.

Example 4.2. Let M =

{(
a 0
b a

)
: a, b ∈ Q

}
, where Q is the set

of rational numbers and Γ =

{(
a 0
0 a

)
: a ∈ N

}
, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups
with respect to the usual matrix addition of 2×2 matrices and a ternary
operation, which is defined as M × Γ×M by (x, α, y)→ xαy using the
usual matrix multiplication for all x, y ∈ M and α ∈ Γ. Let A = (aij)
and B = (bij) ∈ M, we define A ≤ B ⇔ aij ≤ bij for all i, j. Then M is
an ordered Γ-semiring. Define a map d : M →M given by

d

((
a 0
b c

))
=

(
0 0
b 0

)
Then d is a reverse derivation on M.

Example 4.3. Let M =

{(
a 0
b a

)
: a, b ∈ Q

}
, where Q is the set

of rational numbers and Γ =

{(
a 0
0 b

)
: a ∈ N

}
, where N is the

set of natural numbers. Then M and Γ are additive abelian semigroups
with respect to the usual matrix addition of 2×2 matrices and a ternary
operation, which is defined as M × Γ×M by (x, α, y)→ xαy using the
usual matrix multiplication for all x, y ∈ M and α ∈ Γ. Let A = (aij)



A note on derivations of ordered Γ-semirings 789

and B = (bij) ∈ M, we define A ≤ B ⇔ aij ≤ bij for all i, j. Then M is
an ordered Γ-semiring. Define a map d : M →M given by

d

((
a 0
b c

))
=

(
0 0
b 0

)
Then d is a derivation on M but not a reverse derivation of M.

Theorem 4.4. Let d be a reverse derivation of M. If M is of charac-
teristic 2, then d2 is a derivation of M.

Proof. Let d be a reverse derivation of M and let M is of characteristic
2. For any x, y ∈M and α ∈ Γ, we have

d2(xαy) = d(d(xαy)) = d(d(y)αx+ yαd(x))

= d(x)αd(y) + xαd2(y) + d2(x)αy + d(x)αd(y)

= d2(x)αy + xαd2(y).

Hence d2 is a derivation of M.

Proposition 4.5. Let M be an idempotent ordered Γ-semiring and
additively cancellative. If d is a reverse derivation ofM, then aαd(a)αa =
0 for all α ∈ Γ.

Proof. Let M be an idempotent ordered Γ-semiring and additively
cancellative. Hence aαa = a for any a ∈ M and α ∈ Γ. Since d
is a reverse derivation of M, we have d(a)αa + aαd(a) = d(a). Pre-
multiplying by a, we have aαd(a)αa + aαaαd(a) = aαd(a). That is,
aαd(a)αa+ aαd(a) = aαd(a) + 0. Since M is additively cancellative, we
get aαd(a)αa = 0.

Proposition 4.6. Let d be a reverse derivation of an ordered Γ-
semiring and a ∈ M. If a is a commuting idempotent element, then
d(a) = 0.

Proof. Let a ∈ M be a commuting idempotent element. That is,
bαa = aαb for all b ∈ M and α ∈ Γ. In particular, aαd(a) = d(a)αa.
Postmultiplying by a, we have aαd(a)αa = d(a)αaαa = d(a)αa. By
Proposition 4.5, we get d(a)αa = 0. Therefore,

d(a) = d(d(aαa)) = d(a)αa+ aαd(a)

= d(a)αa+ d(a)αa = d(a)αa = 0

That is, d(a) = 0.
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Theorem 4.7. Let d be a reverse derivation of an additively cancella-
tive commutative idempotent ordered Γ-semiring M in which (M,+) is
positively ordered. Define a set Fixd(M) by

Fixd(M) = {x ∈M |d(x) = x}.

Then Fixd(M) is an ideal of M.

Proof. Let x, y ∈ Fixd(M) and α ∈ Γ. Then we have d(x) = x and
d(y) = y, which implies d(x+ y) = d(x) + d(y) = x+ y. That is, x+ y ∈
Fixd(M). Also, d(xαy) = d(y)αx+ yαd(x) = yαx+ yαx = yαx = xαy.
Therefore, xαy ∈ Fixd(M). So, Fixd(M) is a ordered Γ-subsemiring of
M. Let x ≤ y and y ∈ Fixd(M). Then x ≤ y implies x + y ≤ y + y, so
x+y ≤ y ≤ x+y, which means x+y = y. Hence d(x+y) = x+y implies
d(x) + d(y) = x + y, that is, d(x) + y = x + y. Since M is additively
cancellative, we have d(x) = x. This completes the proof.

Corollary 4.8. Let d be a reverse derivation of an additively can-
cellative commutative idempotent ordered Γ-semiringM in which (M,+)
is positively ordered. Then Fixd(M) is an k-ideal of M.

Proof. Let x+y ∈ Fixd(M) and y ∈ Fixd(M). Then d(x+y) = x+y
and d(y) = y. So, d(x)+d(y) = x+y implies d(x)+y = x+y. Therefore,
d(x) = x. By Theorem 4.7, Fixd(M) is an ideal of M. Hence Fixd(M)
is a k-ideal of M.
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