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ON STEFFENSEN INEQUALITY IN p-CALCULUS

Milad Yadollahzadeh, Mehdi Tourani, and
Gholamreza Karamali∗

Abstract. In this paper, we provide a new version of Steffensen
inequality for p-calculus analogue in [17, 18] which is a generaliza-
tion of previous results. Also, the conditions for validity of reverse to
p-Steffensen inequalities are given. Lastly, we will obtain a general-
ization of p-Steffensen inequality to the case of monotonic functions.

1. Introduction

Many applied sciences and engineering problems, for instance, can
be pursued without their explicit mention. Nevertheless, a facility with
inequalities seem to be necessary for an understanding of much of math-
ematics at intermediate and higher levels. Inequalities serve a natural
purpose of comparison, and they sometimes afford us indirect routes of
reasoning or problem solving when more direct routes might be incon-
venient or unavailable.

The Steffensen inequality is of great interest in differential and dif-
ference equations [20]. Many authors have dealt with this renowned
inequality [3, 4, 8, 12, 21]. Steffensen inequality is important not only in
the theory of inequalities also in many applications such as statistics,
functional equations, special functions, time scales etc. Some of these
applications can be found in [5, 6, 9–11].
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The purpose of this paper is to find p-generalization of the classical
Steffensen inequality. We will present some of the necessary conditions
for validity of reverse to p-Steffensen inequality. As well as we will show
that by using a quite different form, we can to access to p-Steffensen
inequality. Before beginning the main subject of the paper, let us to
present definitions and facts from the quantum calculus and p-calculus
necessary for understanding of this paper.

Quantum calculus is usually known as ”calculus without limit”. In
1750 Euler introduced a type of quantum calculus called the q-calculus.
The notions of the q-derivative and the definite q-integral were (re)intro-
duced by Jackson in the early twentieth century [13]. The following
expression,

Dqf(x) =
f(qx)− f(x)

(q − 1)x
,

is called the q-derivative of the function f(x), where q is a fixed number
different from 1. The q-calculus has developed into an interdisciplinary
subject and has a lot of applications in different mathematical areas and
physics and chemical physics [7,15,16]. For more details about quantum
calculus, we refer the readers to [1, 2, 7, 14, 19].

Recently, the authors presented a new type of quantum calculus,
called the p-calculus involving two concepts of p-derivative and p-integral
in [17]. Moreover, some new properties of functions in p-calculus such as
effects of a convex or monotone function on the p-derivative, the behav-
ior of p-derivative in a neighborhood of a local extreme point and mean
value theorems for p-derivatives and p-integrals were proposed in [18].

Throughout this paper, we assume that p is a fixed number different
from 1 and domain of function f(x) is [0,+∞). Here, we recall some
definitions and fundamental results on p-calculus that is needed to prove
our results (see [17,18]).

Definition 1.1. Let f(x) be an arbitrary function. Then the p-
differential is defined as

dpf(x) = f(xp)− f(x).

In particular, dp(x) = xp − x. By the p-differential, we can define
p-derivative of a function.
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Definition 1.2. For an arbitrary function f(x), the p-derivative is
defined by

Dpf(x) =
dpf(x)

dp(x)
=
f(xp)− f(x)

xp − x
, if x 6= 0, 1.

Corollary 1.3. If f(x) is differentiable, then lim
p→1

Dpf(x) = f ′(x),

and also if f ′(x) exists in a neighborhood of x = 0, x = 1 and is contin-
uous at x = 0 and x = 1, then we have

Dpf(0) = f ′+(0), Dpf(1) = f ′(1).

Definition 1.4. The p-derivative of higher order of function f is
defined by

(D0
pf)(x) = f(x), (Dn

pf)(x) = Dp(D
n−1
p f)(x), n ∈ N.

Notice that the p-derivative is a linear operator, i.e., for any constants
a and b, and arbitrary functions f(x) and g(x), we have

Dp(af(x) + bg(x)) = aDpf(x) + bDpg(x).

Definition 1.5. A function F (x) is a p-antiderivative of f(x) if
DpF (x) = f(x). It is denoted by

F (x) =

∫
f(x)dpx.

To constructing the p-antiderivative, we define an operator M̂p, by

M̂p(F (x)) = F (xp). Then we have:

1

xp − x
(M̂p − 1)F (x) =

F (xp)− F (x)

xp − x
= DpF (x) = f(x).

Since M̂ j
p (F (x)) = F (xp

j
) for j ∈ {0, 1, 2, 3, ...}, and also by the

geometric series expansion, we formally have

(1.1)

F (x) =
1

1− M̂p

((x−xp)f(x)) =
∞∑
j=0

M̂ j
p ((x−xp)f(x)) =

∞∑
j=0

(xp
j−xpj+1

)f(xp
j
).

It is worth mentioning that we say that (1.1) is formal because the
series does not always converge.
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Definition 1.6. The p-integral of f(x) is defined to be the series

∞∑
j=0

(xp
j − xpj+1

)f(xp
j

).

We now want to define the definite p-integral. We consider the follow-
ing three cases. Then, the definite p-integral related to each case is given.

Case 1. Let 1 < a < b where a, b ∈ R, p ∈ (0, 1) and function f is

defined on (1, b]. Notice that for any j ∈ {0, 1, 2, 3, ...}, bpj ∈ (1, b]. We
now define the definite p-integral of f(x) on interval (1, b].

Definition 1.7. The p-integral of a function f(x) on the interval
(1, b] is defined as

(1.2)

∫ b

1

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j−bpj+1

)f(bp
j

) =
∞∑
j=0

(bp
j−bpj+1

)f(bp
j

),

and ∫ b

a

f(x)dpx :=

∫ b

1

f(x)dpx−
∫ a

1

f(x)dpx.

Note 1.8. Geometrically, the integral in (1.2) corresponds to the area
of the union of an infinite number of rectangles. On [1 + ε, b], where ε is
a small positive number, the sum consists of finitely many terms, and is
a Riemann sum. Therefore, as p→ 1, the norm of partition approaches
zero, and the sum tends to the Riemann integral on [1 + ε, b]. Since ε is
arbitrary, provided that f(x) is continuous in the interval [1, b], thus we
have

lim
p→1

∫ b

1

f(x)dpx =

∫ b

1

f(x)dx.

Case 2. Let 0 < b < 1 and p ∈ (0, 1). It should be noted that for any

j ∈ {0, 1, 2, 3, ...}, bpj ∈ [b, 1) and bp
j
< bp

j+1
. We will define the definite

p-integral of f(x) on interval [b, 1) as follows.

Definition 1.9. The p-integral of a function f(x) on the interval
[b, 1) is defined as∫ 1

b

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j+1 − bpj)f(bp

j

) =
∞∑
j=0

(bp
j+1 − bpj)f(bp

j

).
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Note 1.10. The p-integrals defined above are also denoted by∫ b

1

f(x)dpx = Ip+f(b),

∫ 1

b

f(x)dpx = Ip−f(b).

Case 3. Let 0 < a < b < 1 and p ∈ (0, 1). Then for any j ∈
{0, 1, 2, 3, ...}, bp−j ∈ (0, b] and bp

−j−1
< bp

−j
. Let us to state the definite

p-integral of f(x) on interval (0, b].

Definition 1.11. The p-integral of a function f(x) on the interval
(0, b] (b < 1) is defined as

Ipf(b) =

∫ b

0
f(x)dpx = lim

N→∞

N∑
j=0

(bp
−j − bp

−j−1
)f(bp

−j−1
)

=

∞∑
j=0

(bp
−j − bp

−j−1
)f(bp

−j−1
),

and ∫ b

a

f(x)dpx =

∫ b

0

f(x)dpx−
∫ a

0

f(x)dpx.

Note 1.12. We can also apply Note 1.8 for the p-integrals defined in
the cases 2 and 3 on the intervals [b, 1− ε] and [ε, b] respectively, and by
it define the Riemann integral.

Remark 1.13. If p ∈ (0, 1), then for any j ∈ {0,±1,±2, ...}, we have

pp
j ∈ (0, 1), pp

j
< pp

j+1
and∫ 1

0

f(x)dpx =
∞∑

j=−∞

∫ pp
j+1

pp
j

f(x)dpx =
∞∑

j=−∞

(pp
j+1 − ppj)f(pp

j

).

Property 1.14. Suppose 0 ≤ a < 1 < b. Then by Note 1.8 and Note
1.12, we have ∫ b

a

f(x)dpx =

∫ 1

a

f(x)dpx+

∫ b

1

f(x)dpx.

Definition 1.15. The p-integral of higher order of a function f is
given by

(I0pf)(x) = f(x), (Inp f)(x) = Ip(I
n−1
p f)(x), n ∈ N.

Lemma 1.16. [17] If x > 1 and p ∈ (0, 1), then DpIp+f(x) = f(x),
and also if function f is continuous at x = 1, then we have Ip+Dpf(x) =
f(x)− f(1).
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Lemma 1.17. If x, p ∈ (0, 1) and Ipf(x) =
∫ x
0
f(s)dps, thenDpIpf(x) =

f(x), and also if function f is continuous at x = 0, then we have
IpDpf(x) = f(x)− f(0).

An important difference between the definite p-integral and its ordi-
nary counterpart is that if we are integrating a function on an interval

like [2, 3] or [
1

3
,
1

2
], we have to care about its behavior at x = 1 or x = 0,

respectively.
The definite p-integrals defined above are too general for our purpose

of studying inequalities. For example, if f(x) ≥ g(x) ≥ 0, it is not

necessarily true
∫ b
a
f(x)dpx ≥

∫ b
a
g(x)dpx ≥ 0 (a 6= 0, 1). From now on,

we will use a special type of the definite p-integral, or in other words we
will study the definite p-integrals on interval [a, b], where a = bp

n
and

b > 1, or on interval [b, a], where a = bp
n
, b < 1 and n ∈ Z+. The

following formulae are concluded as follows:∫ b

a
f(x)dpx =

∫ b

bpn
f(x)dpx =

n−1∑
j=0

(bp
j − bp

j+1
)f(bp

j
), if 1 ≤ a < b,

and∫ a

b
f(x)dpx =

∫ bp
n

b
f(x)dpx =

n−1∑
j=0

(bp
n−j−bpn−j−1

)f(bp
n−j−1

), if 0 < b < a < 1.

Obviously, if f(x) ≥ g(x) on [a, b], then
∫ b
a
f(x)dpx ≥

∫ b
a
g(x)dpx.

Definition 1.18. f(x) is called p-increasing (respectively, p-decreasing)
on [a, b] if f(xp) ≤ f(x) (respectively, f(xp) ≥ f(x)) for all xp < x, or
f(xp) ≥ f(x) (respectively, f(xp) ≤ f(x)) for all xp > x, whenever
x ∈ [a, b] and xp ∈ [a, b].

Note 1.19. If f(x) is increasing (decreasing), then it is also p-increasing
( p-decreasing).

2. Steffensen Inequality

In 1918, Steffensen proved the following theorem [20]:

Theorem 2.1. Suppose that f and g are integrable functions defined
on (a, b), f is decreasing and for each x ∈ (a, b), 0 ≤ g(x) ≤ 1. Set
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λ =
∫ b
a
g(x)dx. Then,

∫ b

b−λ
f(x)dx ≤

∫ b

a

f(x)g(x)dx ≤
∫ a+λ

a

f(x)dx.

We now establish p-generalization of Theorem 2.1.

Theorem 2.2. (p-Steffensen inequality). Suppose 0 < p < 1, b > 1
and a = bp

n
, where n ∈ Z+. Let f, g, h : [1, b] → R be three functions

such that f is p-decreasing and 0 ≤ g(x) ≤ h(x) on [a, b]. Assume that
k,l ∈ {0, 1, 2, ..., n}, such that

∫ b

bpl
h(x)dpx ≤

∫ b

a

g(x)dpx ≤
∫ bp

k

a

h(x)dpx, if f ≥ 0, on [a, b],

and

∫ bp
k

a

h(x)dpx ≤
∫ b

a

g(x)dpx ≤
∫ b

bpl
h(x)dpx, if f ≤ 0, on [a, b].

Then,

(2.1)

∫ b

bpl
f(x)h(x)dpx ≤

∫ b

a

f(x)g(x)dpx ≤
∫ bp

k

a

f(x)h(x)dpx.

Proof. We prove only the left inequality in (2.1) in the case f ≥ 0.
The proofs of the other cases are similar. Since f is p-decreasing and g
is nonnegative, we have∫ b

a

f(x)g(x)dpx−
∫ b

bp
l
f(x)h(x)dpx

=

∫ bp
l

a

f(x)g(x)dpx+

∫ b

bpl
f(x)g(x)dpx−

∫ b

bpl
f(x)h(x)dpx

=

∫ bp
l

a

f(x)g(x)dpx−
∫ b

bpl
f(x)(h(x)− g(x))dpx
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=

∫ bp
l

a

f(x)g(x)dpx−
l−1∑
j=0

(bp
j − bpj+1

)[f(bp
j

)(h(bp
j

)− g(bp
j

))]

≥
∫ bp

l

a

f(x)g(x)dpx−
l−1∑
j=0

(bp
j − bpj+1

)[f(bp
l

)(h(bp
j

)− g(bp
j

))]

=

∫ bp
l

a

f(x)g(x)dpx−
l−1∑
j=0

(bp
j − bpj+1

)f(bp
l

)h(bp
j

)

+
l−1∑
j=0

(bp
j − bpj+1

)f(bp
l

)g(bp
j

)

=

∫ bp
l

a

f(x)g(x)dpx− f(bp
l

)

∫ b

bpl
h(x)dpx+ f(bp

l

)

∫ b

bpl
g(x)dpx

≥
∫ bp

l

a

f(x)g(x)dpx− f(bp
l

)

∫ b

a

g(x)dpx+ f(bp
l

)

∫ b

bpl
g(x)dpx

=

∫ bp
l

a

f(x)g(x)dpx− f(bp
l

)[

∫ b

a

g(x)dpx−
∫ b

bpl
g(x)dpx]

=

∫ bp
l

a

f(x)g(x)dpx− f(bp
l

)

∫ bp
l

a

g(x)dpx

=

∫ bp
l

a

[f(x)− f(bp
l

)]g(x)dpx

=
n−l−1∑
j=0

(bp
l+j − bpl+j+1

)[f(bp
l+j

)− f(bp
l

)]g(bp
l+j

) ≥ 0.

Remark 2.3. Setting h(x) = 1 in Theorem 2.2, we obtain the special
case of (2.1), that is∫ b

bpl
f(x)dpx ≤

∫ b

a

f(x)g(x)dpx ≤
∫ bp

k

a

f(x)dpx.

The Theorem 2.2 is also true for the case 0 < b < 1 that we state it
as follows.
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Theorem 2.4. Suppose p, b ∈ (0, 1) and a = bp
n
, where n ∈ Z+. Let

f, g, h : [0, a] → R be three functions such that f is p-decreasing and
0 ≤ g(x) ≤ h(x) on [b, a]. Assume that k,l ∈ {0, 1, 2, ...n} such that∫ a

bpl
h(x)dpx ≤

∫ a

b

g(x)dpx ≤
∫ bp

k

b

h(x)dpx, if f ≥ 0, on [b, a],

and∫ bp
k

b

h(x)dpx ≤
∫ a

b

g(x)dpx ≤
∫ a

bpl
h(x)dpx, if f ≤ 0, on [b, a].

Then,

(2.2)

∫ a

bpl
f(x)h(x)dpx ≤

∫ a

b

f(x)g(x)dpx ≤
∫ bp

k

b

f(x)h(x)dpx.

Proof. The proof is very similar to the proof of Theorem 2.2. We
prove only the right inequality in (2.2) in the case f ≥ 0. In the fol-
lowing calculation, we use of the fact that f is p-decreasing and g(x) is
nonnegative.∫ a

b
f(x)g(x)dpx−

∫ bp
k

b
f(x)h(x)dpx

=

∫ bp
k

b
f(x)g(x)dpx +

∫ a

bpk
f(x)g(x)dpx−

∫ bp
k

b
f(x)h(x)dpx

=

∫ a

bpk
f(x)g(x)dpx−

∫ bp
k

b
f(x)(h(x)− g(x))dpx

=

∫ a

bpk
f(x)g(x)dpx−

k−1∑
j=0

(bp
k−j − bp

k−j−1
)[f(bp

k−j−1
)(h(bp

k−j−1
)− g(bp

k−j−1
))]

≤
∫ a

bpk
f(x)g(x)dpx−

k−1∑
j=0

(bp
k−j − bp

k−j−1
)[f(bp

k
)(h(bp

k−j−1
)− g(bp

k−j−1
))]

=

∫ a

bpk
f(x)g(x)dpx−

k−1∑
j=0

(bp
k−j − bp

k−j−1
)f(bp

k
)h(bp

k−j−1
)

+
k−1∑
j=0

(bp
k−j − bp

k−j−1
)f(bp

k
)g(bp

k−j−1
)
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=

∫ a

bpk
f(x)g(x)dpx− f(bp

k
)

∫ bp
k

b
h(x)dpx + f(bp

k
)

∫ bp
k

b
g(x)dpx

≤
∫ a

bpk
f(x)g(x)dpx− f(bp

k
)

∫ a

b
g(x)dpx + f(bp

k
)

∫ bp
k

b
g(x)dpx

=

∫ a

bpk
f(x)g(x)dpx− f(bp

k
)[

∫ a

b
g(x)dpx−

∫ bp
k

b
g(x)dpx]

=

∫ a

bpk
f(x)g(x)dpx− f(bp

k
)

∫ a

bpk
g(x)dpx

=

∫ a

bpk
[f(x)− f(bp

k
)]g(x)dpx ≤ 0.

The above result is also true for the case that b = 0 and a ∈ (0, 1) is
arbitrary as follows.

Theorem 2.5. Suppose p, a ∈ (0, 1) and f, g, h : [0, a]→ R be three
functions such that f is p-decreasing and 0 ≤ g(x) ≤ h(x) on [0, a].
Assume that k,l ∈ {0, 1, 2...} such that∫ a

ap−l
h(x)dpx ≤

∫ a

0

g(x)dpx ≤
∫ ap

−k

0

h(x)dpx, if f ≥ 0, on [0, a],

and∫ ap
−k

0

h(x)dpx ≤
∫ a

0

g(x)dpx ≤
∫ a

ap−l
h(x)dpx, if f ≤ 0, on [b, a].

Then,

(2.3)

∫ a

ap−l
f(x)h(x)dpx ≤

∫ a

0

f(x)g(x)dpx ≤
∫ ap

−k

0

f(x)h(x)dpx.

Proof. The proof is analogous to the one of Theorem 2.4.

In Theorem 2.2, we used a special type of definite p-integral, namely
a = bp

n
. The lower limit of integral, namely a ≥ 1, can be arbitrary,

but in this case the result holds for some p ∈ (0, 1). We explain this as
follows.

Theorem 2.6. Let 1 ≤ a < b and f, g, h : [1, b] → R be three
functions such that f is p-decreasing and 0 ≤ g(x) ≤ h(x) on [a, b]. Then,
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there exists p ∈ (0, 1) such that (2.1) hold (k,l hold in the assumptions
of Theorem 2.2).

Proof. Since 1 ≤ a < b, there exists p ∈ (0, 1) and n ∈ Z+ such that
a = bp

n
. Using Theorem 2.2, we obtain (2.1).

3. Reverse Inequality

Here we want to state reverse to p-Steffensen inequalities. By the use
of identities similar to those in (2.2), the conditions for validity of reverse
to p-Steffensen inequalities are given. Let us to present it as follows.

Theorem 3.1. Suppose 0 < p < 1, b > 1 and a = bp
n
, where n ∈ Z+.

Let f, g, h : [1, b] → R be three functions such that f is p-decreasing

on [a, b] and l ∈ {0, 1, 2, ...n} such that g(x) ≤ 0 for a ≤ x ≤ bp
l

and

g(x) ≥ h(x) for bp
l ≤ x ≤ b and also∫ b

a

g(x)dpx ≤
∫ b

bpl
h(x)dpx, if f ≥ 0, on [a, b],

and ∫ b

bpl
h(x)dpx ≤

∫ b

a

g(x)dpx, if f ≤ 0, on [a, b].

Then, ∫ b

a

f(x)g(x)dpx ≤
∫ b

bpl
f(x)h(x)dpx.

Theorem 3.2. Suppose 0 < p < 1, b > 1 and a = bp
n
, where n ∈ Z+.

Let f, g, h : [1, b]→ R be three functions such that f is p-decreasing on

[a, b] and k ∈ {0, 1, 2, ...n} such that g(x) ≥ h(x) for a ≤ x ≤ bp
k

and

g(x) ≤ 0 for bp
k ≤ x ≤ b and also∫ bp

k

a

h(x)dpx ≤
∫ b

a

g(x)dpx, if f ≥ 0, on [a, b],

and ∫ b

a

g(x)dpx ≤
∫ bp

k

a

h(x)dpx, if f ≤ 0, on [a, b].

Then, ∫ bp
k

a

f(x)h(x)dpx ≤
∫ b

a

f(x)g(x)dpx.
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Theorem 3.3. Suppose 0 < p < 1, b > 1 and a = bp
n
, where n ∈ Z+.

Let f, g, h : [1, b]→ R be three functions such that f is p-increasing and
0 ≤ g(x) ≤ h(x) on [a, b]. If k,l ∈ {0, 1, 2, ..., n}, such that∫ bp

k

a

h(x)dpx ≤
∫ b

a

g(x)dpx ≤
∫ b

bpl
h(x)dpx, if f ≥ 0, on [a, b],

and∫ b

bpl
h(x)dpx ≤

∫ b

a

g(x)dpx ≤
∫ bp

k

a

h(x)dpx, if f ≤ 0, on [a, b].

Then, ∫ bp
k

a

f(x)h(x)dpx ≤
∫ b

a

f(x)g(x)dpx ≤
∫ b

bpl
f(x)h(x)dpx.

4. Access to p-Steffensen Inequality

The following theorem helps us to achieve to p-Steffensen inequality.

Theorem 4.1. Suppose 0 < p < 1, b > 1 and a = bp
n
. Let G be

increasing and f : [1, A] → R decreasing (A ∈ R such that A > 1
and also a, b, G(a), G(b) ∈ [1, A] ). Assume that there exists j ∈
{0, 1, 2, ..., n} such that G(a) = G(b)p

j
.

(i) If G(x) ≥ x, then

(4.1)

∫ b

a

f(x)DpG(x)dpx ≥
∫ G(b)

G(a)

f(z)dpz.

(ii) If G(x) ≤ x, then the opposite inequality in (4.1) holds.

Proof. Set G(x) = z. Then, we have∫ b

a

f(x)DpG(x)dpx =

∫ b

a

f(x)dpG(x) =

∫ G(b)

G(a)

f(G−1(z))dpz.

If G(z) ≥ z, then G−1(z) ≤ z and f(G−1(z)) ≥ f(z). Hence, we have∫ G(b)

G(a)

f(G−1(z))dpz ≥
∫ G(b)

G(a)

f(z)dpz.

If G(z) ≤ z, the opposite inequality holds.
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Note 4.2. If G(x) ≤ x and G(a) = 1 in Theorem 4.1, then the

condition G(a) = G(b)p
j

is omitted.

Remark 4.3. The above result is a generalization of Remark 2.3 by
adding a condition of monotony. Consider G(x) = 1+

∫ x
1
g(t)dpt on [1, b],

where g is the function from Theorem 2.2 with h(x) = 1 (Remark 2.3
), including g is increasing. Then, G(x) ≤ x and G is increasing. Since
G(1) = 1, by Note 4.2 the conditions of Theorem 4.1 are satisfied. Now

if k ∈ {0, 1, 2, ..., n} such that 1 +
∫ b
1
g(t)dpt = bp

k
, from the opposite

inequality to inequality (4.1), the second inequality in (2.1) for the case
a = 1 follows.

Let us notice that the results of Theorem 4.1 also hold for the case
b < 1 and a = bp

n
. On the basis of the proof of Theorem 4.1, we can

formulate the following results.

Theorem 4.4. Suppose p, b ∈ (0, 1), a = bp
n
(n ∈ Z+). Consider

functions f,G such that G is increasing and f : [0, A] → R decreasing,
where A ≤ 1. Assume that there exists j ∈ {0, 1, 2, ..., n} such that

G(a) = G(b)p
j
(a, b,G(a), G(b) ∈ [0, A]).

(i) If G(x) ≥ x, then

(4.2)

∫ a

b

f(x)DpG(x)dpx ≥
∫ G(a)

G(b)

f(z)dpz.

(ii) If G(x) ≤ x, then the opposite inequality in (4.2) holds.

Proof. The proof is analogous to the one of Theorem 4.1.

The above result is also true for the case that b = 0 and a ∈ (0, 1) is
arbitrary as follows.

Theorem 4.5. Let p, a ∈ (0, 1), G is increasing and f : [0, A] → R
decreasing, where A ≤ 1. Assume that there exists j ∈ {0, 1, 2, ..., n}
such that G(a) = G(0)p

j
(0, a, G(0), G(a) ∈ [0, A]).

(i) If G(x) ≥ x, then

(4.3)

∫ a

0

f(x)DpG(x)dpx ≥
∫ G(a)

G(0)

f(z)dpz.

(ii) If G(x) ≤ x, then the opposite inequality in (4.3) holds.

Proof. The proof is analogous to the one of Theorem 4.1.
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Note 4.6. If G(0) = 0 in Theorem 4.5, then the condition G(a) =

G(0)p
j

is omitted.

Remark 4.7. The above result is a generalization of Theorem 2.5 by
adding a condition of monotony. Consider function G(x) =

∫ x
0
g(t)dpt on

[0, 1], where g is the function from Theorem 2.5 with h(x) = 1, including
g is increasing. Then, G(x) ≤ x and G is increasing. Since G(0) = 0,
then by Note 4.6 the conditions of Theorem 4.5 are satisfied. Now if k
∈ {0, 1, 2...} such that

∫ a
0
g(t)dpt = ap

−k
, from the opposite inequality to

inequality (4.3), the second inequality in (2.3) follows.
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