DOI QR코드

DOI QR Code

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Received : 2018.12.04
  • Accepted : 2019.03.08
  • Published : 2019.09.30

Abstract

We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

Keywords

References

  1. P. Baird and J. Eells, A conservation law for harmonic maps, in Geometry Symposium, Utrecht 1980 (Utrecht, 1980), 1-25, Lecture Notes in Math., 894, Springer, Berlin, 1981.
  2. P. Centore, Finsler Laplacians and minimal-energy maps, Internat. J. Math. 11 (2000), no. 1, 1-13. https://doi.org/10.1142/S0129167X00000027
  3. Q. Chen, Stability and constant boundary-value problems of harmonic maps with potential, J. Austral. Math. Soc. Ser. A 68 (2000), no. 2, 145-154. https://doi.org/10.1017/S1446788700001907
  4. Q. Chen, J. Jost, and H. Qiu, Existence and Liouville theorems for V -harmonic maps from complete manifolds, Ann. Global Anal. Geom. 42 (2012), no. 4, 565-584. https://doi.org/10.1007/s10455-012-9327-z
  5. Q. Chen, J. Jost, and G. Wang, A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl, and Finsler geometry, J. Geom. Anal. 25 (2015), no. 4, 2407-2426. https://doi.org/10.1007/s12220-014-9519-9
  6. Q. Chen and H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv. Math. 294 (2016), 517-531. https://doi.org/10.1016/j.aim.2016.03.004
  7. Y. Dong and S. W. Wei, On vanishing theorems for vector bundle valued p-forms and their applications, Comm. Math. Phys. 304 (2011), no. 2, 329-368. https://doi.org/10.1007/s00220-011-1227-8
  8. S. Dragomir and L. Ornea, Locally Conformal Kahler Geometry, Progress in Mathematics, 155, Birkhauser Boston, Inc., Boston, MA, 1998. https://doi.org/10.1007/978- 1-4612-2026-8
  9. A. Fardoun and A. Ratto, Harmonic maps with potential, Calc. Var. Partial Differential Equations 5 (1997), no. 2, 183-197. https://doi.org/10.1007/s005260050065
  10. S. Feng and Y. Han, Liouville type theorems of f-harmonic maps with potential, Results Math. 66 (2014), no. 1-2, 43-64. https://doi.org/10.1007/s00025-014-0363-9
  11. A. Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J. 12 (1965), 273-287. http://projecteuclid.org/euclid.mmj/1028999364 https://doi.org/10.1307/mmj/1028999364
  12. R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, 699, Springer, Berlin, 1979.
  13. Y. Han, Y. Li, Y. Ren, and S. W. Wei, New comparison theorems in Riemannian geometry, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 2, 163-186.
  14. J. Jost and F. M. Simsir, Affine harmonic maps, Analysis (Munich) 29 (2009), no. 2, 185-197. https://doi.org/10.1524/anly.2009.1050
  15. J. Jost and S.-T. Yau, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993), no. 2, 221-254. https://doi.org/10.1007/BF02392786
  16. H. Karcher and J. C. Wood, Nonexistence results and growth properties for harmonic maps and forms, J. Reine Angew. Math. 353 (1984), 165-180.
  17. G. Kokarev, On pseudo-harmonic maps in conformal geometry, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 168-194. https://doi.org/10.1112/plms/pdn056
  18. H. Lin, G. Yang, Y. Ren, and T. Chong, Monotonicity formulae and Liouville theorems of harmonic maps with potential, J. Geom. Phys. 62 (2012), no. 9, 1939-1948. https://doi.org/10.1016/j.geomphys.2012.04.008
  19. J.-C. Liu, Constant boundary-value problems for p-harmonic maps with potential, J. Geom. Phys. 57 (2007), no. 11, 2411-2418. https://doi.org/10.1016/j.geomphys.2007.08.006
  20. H. Qiu, The heat flow of V -harmonic maps from complete manifolds into regular balls, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2271-2280. https://doi.org/10.1090/proc/13332
  21. H. C. J. Sealey, Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 441-452. https://doi.org/10.1017/S030500410005948X
  22. Y. Xin, Geometry of Harmonic Maps, Progress in Nonlinear Differential Equations and their Applications, 23, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4084-6
  23. G. Yang, Y. Han, and Y. Dong, Partial energies monotonicity and holomorphicity of Hermitian pluriharmonic maps, Sci. China Math. 56 (2013), no. 5, 1019-1032. https://doi.org/10.1007/s11425-013-4581-5