DOI QR코드

DOI QR Code

Key Structural Features of PigCD45RO as an Essential Regulator of T-cell Antigen Receptor Signaling

T-세포 항원 수용체 매개 신호전달 조절자로서 돼지 CD45RO 구조특성

  • Chai, Han-Ha (Animal Genomics and Bioinformatics Division, National Institute of Animal Science and Collage of Pharmacy, Chonnam National University) ;
  • Lim, Dajeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science)
  • 채한화 (국립축산과학원 동물유전체과, 전남대학교 약학대학) ;
  • 임다정 (국립축산과학원 동물유전체과)
  • Received : 2019.07.31
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

Pig CD45, the leukocyte common antigen, is encoded by the PTPRC gene and CD45 is a T cell-type specific tyrosine phosphatase with alternative splicing of its exons. The CD45 is a coordinated regulator of T cell antigen receptor (TCR) signal transduction achieved by dephosphorylating the phosphotyrosine of its substances, including $CD3{\zeta}$ chain of TCR, Lck, Fyn, and Zap-70 kinase. A dysregulation of CD45 is associated with a multitude of immune disease and has been a target for immuno-drug discovery. To characterize its key structural features with the effects of regulating TCR signaling, this study predicted the unknown structure of pig CD45RO (the smallest isoform) and the complex structure bound to the ITAM (REEpYDV) of $CD3{\zeta}$ chain via homology modeling and docking the peptide, based on the known human CD45 structures. These features were integrated into the structural plasticity of extracellular domains and functional KNRY and PTP signature motifs (the role of a narrow entrance into ITAM binding site) of the tyrosine phosphatase domains in a cytoplasmic region from pig CD45RO. This contributes to the selective recognition of phosphotyrosine from its substrates by adjusting the structural stability and binding affinity of the complex. The characterized features of pigCD45RO can be applied in virtual screening of the T-cell specific immunomodulator.

백혈구 공통 항원인 돼지 CD45는 PTPRC 유전자에 암호화 되어 있으며, CD45엑손의 선택적 스플라이싱에 따라 다른 T-세포에서 발현되는 티로신 인산분해효소이다. CD45는 기질인 TCR의 $CD3{\zeta}$ 사슬, Lck, Fyn, Zap-70 kinase의 인산화된 티로신에서 인산을 분해하여 T-세포 항원 수용체(TCR) 매개 신호전달을 조절한다. CD45의 조절이상은 많은 면역 질환과 관련이 있어서, CD45는 면역약물 개발에 표적이 되어왔다. TCR 신호전달의 조절효과를 가진 주요 구조적 특징을 특성화하기 위해, 사람의 알려진 CD45 구조를 템플릿으로 적용하여 돼지 CD45RO(가장 작은 CD45 isoform)의 단백질 구조와 예측된 돼지 CD45RO 모델구조에 $CD3{\zeta}$ 사슬의 ITAM(REEpYDV)를 도킹하여 CD45RO/ITAM 펩타이드 결합구조를 예측하였다. 돼지 CD45RO의 구조적 특징은 세포외영역의 구조견고성과 세포질 내 티로신 인산분해효소 도메인의 KNRY와 PTP signature 기능모티프(두 기능 모티프는 ITAM 펩타이드 결합부위의 좁은 입구로 역할)에 있었다. 주요 구조특성은 돼지 CD45RO-ITAM 펩타이드 결합구조 안정성과 결합친화력을 조절하면서 기질 선택성에 영향을 준다. 돼지 CD45RO의 구조적 특성은 T-세포에 특이적인 면역 조절제를 탐색하는 데에 적용될 것이다.

Keywords

References

  1. J. A. Siller-Farfan, O. Dushek, "Molecular mechanisms of T-cell sensitivity to antigen", Immunological Reviews, vo1. 285, no. 1, pp. 194-205, September, 2018. DOI: https://doi.org/10.1111/imr.12690
  2. M. L. Hemiston, J. Zikherman, J. W. Zhu, "CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells", Immunology Reviews, vol. 228, no. 1, pp. 288-311, March, 2009. DOI: https://doi.org/10.1111/j.1600-065X.2008.00752.x
  3. T. Sasaki, J. Sasaki-lrie, J. M. Penninger, "New insights into the transmembrane protein tyrosine phosphate CD45", International Journal of Biochemistry & Cell biology, vol. 33, no. 11, pp. 1041-1046, November, 2001. https://doi.org/10.1016/S1357-2725(01)00075-9
  4. J. D. Ashwell, U. D'Oro, "CD45 and Src-family kinases: and now for something completely different", Immunology Today, vol. 20, no. 9, pp. 412-416, September, 1999. https://doi.org/10.1016/S0167-5699(99)01505-4
  5. M. E. Call, J. R. Schnell, C. Xu, R. A. Lutz, J. J. Chou, K. W. Wucherpfennig, "The structure of the ${\zeta}{\zeta}$ transmembrane dimer reveals features essential for its assembly with the T cell receptor", Cell, vol. 127, no. 2, pp. 355-368, October, 2006. DOI: https://doi.org/10.1016/j.cell.2006.08.044
  6. M. E. Call, K. W. Wucherpfennig, "Molecular mechanisms for the assembly of the T-cell receptor- CD3 complex", Molecular Immunology, vol. 40, no. 18, pp. 1295-1305, April, 2004. DOI: https://doi.org/10.1016/j.molimm.2003.11.017
  7. E. Z. Tchilian, P. C. Beverley, "Altered CD45 expression and disease" Trends in Immunology, vol. 27, no. 3, pp. 146-153, March, 2006. DOI: https://doi.org/10.1016/j.it.2006.01.001
  8. E. Z. Tchilian, P. C. Beverley, "CD45 in memory and disease.", Archivum immunologiae et therapiae experimatalis, vol. 50, no. 2, pp. 85-93, 2002.
  9. A. Rheinlander, B. Schraven, U. Bommhardt, "CD45 in human physiology and clinical medicine", Immunology Letters, vol. 196, pp. 22-32, April, 2018. DOI: https://doi.org/10.1016/j.imlet.2018.01.009
  10. W. J. Hendriks, R. Pulido, "Protein tyrosine phosphates variants in human hereditary disorders and disease susceptibilities", Biochimica et biophysica acta, vol. 1832, no. 10, pp. 1673-1693, October, 2013. DOI: https://doi.org/10.1016/j.bbadis.2013.05.022
  11. A. J. Hale, E. Ter Steege, J. den Hertog, "Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease", Developmental Biology, vol. 428, no. 2, pp. 283-292, August, 2017. DOI: https://doi.org/10.1016/j.ydbio.2017.03.023
  12. R. Majeti, Z. Xu, T. G. Parslow, J. L. Olson, D. I. Daikh, N. Killen, A. Weiss, "An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity", Cell, vol. 103, no. 7, pp. 1059-1070, December, 2000. DOI: https://doi.org/10.1016/s0092-8674(00)00209-9
  13. V. Junghans, A. M. Santos, Y. Lui, S. J. Davis, P. Jonsson, "Dimensions and interactions of large T-cell surface proteins", Frontiers in Immunology, vol. 9. pp. 02215, September, 2018. DOI: https://doi.org/10.3389/fimmu.2018.02215
  14. M. L. Hermiston, Z. Xu, A. Weiss, "CD45: a critical regulator of signaling thresholds in immune cells", Annual review of immunology, vol. 21, pp. 107-137, December, 2003. DOI: https://doi.org/10.1146/annurev.immunol.21.120601.140946
  15. J. Zikherman, A. Weiss, "Alternative splicing of CD45: the tip of the iceberg", Immunity, vol. 29, no. 6, pp. 839-841. December, 2008. DOI: https://doi.org/10.1016/j.immuni.2008.12.005
  16. T. J. Novak, D. Farber, D. Leitenberg, S. C. Hong, P. Johnson, K. Bottomly, "Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition", Immunity, vol. 1, no. 2, pp. 109-119, May, 1994. https://doi.org/10.1016/1074-7613(94)90104-X
  17. H. J. Nam, F. Poy, H. Saito, C. A. Frederick, "Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45", Journal of experimental medicine, vol. 201, no. 3, pp. 441-452, February, 2005. DOI: https://doi.org/10.1084/jem.20041890
  18. V. T. Chang, R. A. Fernandes, K. A. Ganzinger, S. F. Lee, C. Siebold, J. McColl, P. Jὄnsson, M. Palayret, K. Harlos, C. H. Coles, E. Y. Jones, Y. Lui, E. Huang, R. J. C. Gilbert, D. Klenerman, A. R. Aricescu, S. J. Davis, "Initiation of T cell signaling by CD45 segregation at close-contacts", Nature immunology, vol. 17, no. 5, pp. 574-582, May, 2016. DOI: https://doi.org/10.1038/ni.3392
  19. S. E. Hamby, J. D. Hirst, "Prediction of glycosylation sites using random forests", BMC bioinformatics, vol. 9, pp.500. November, 2008. DOI: https://doi.org/10.1186/1471-2105-9-500
  20. F. Li, C. Li, J. Revote, Y. Zhang, G, I. Webb, J. Li, J. Song, T. Lithgow, "GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features", Scientific Report, vol. 6, pp. 34595, October, 2016. DOI: https://doi.org/10.1038/srep34595
  21. S. Jo, X. Cheng, J. Lee, S. Kim, S. J. Park, D. S. Patel, A. H. Beaven, K. I. Lee, H. Rui, S. Park, H. S. Lee, B. Roux, A. D. Mackerell Jr, J. B. Klauda, Y. Qi, W. Im, "CHARMM-GUI 10 years for biomolecular modeling and simulation", Journal of computational chemistry, vol. 38, no. 15, pp. 1114-1124, June, 2017. DOI: https://doi.org/10.1002/jcc.24660
  22. M. Bertoni, F. Kiefer, M. Biasini, L. Bordoli, T. Schwede, "Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology", Scientific Report, vol.7, no. 1, pp. 10480, September, 2017. DOI: https://doi.org/10.1038/s41598-017-09654-8
  23. G. Wu, D. H. Robertson, C. L. 3rd Brooks, M. Vieth, "Detailed analysis of grid-based molecular docking: A case study of CDOCER-A CHARMm-based MD docking algorithm", Journal of Computational Chemistry, vol. 24, no. 13, pp. 1549-1562, October, 2003. DOI: https://doi.org/10.1002/jcc.10306
  24. P. A. van der Merwe, S. P. Cordoba, "Late arrival: recruiting coreceptors to the T cell receptor complex", Immunity, vol. 34, no. 1, pp. 1-3, January, 2011. DOI: https://doi.org/10.1016/j.immuni.2011.01.001
  25. L. V. Sibener, R. A. Fernandes, E. M. Kolawole, C. B. Carbone, F. Liu, D. McAffee, M. E. Birnbaum, X. Yang, L. F. Su, W. Yu, S. Dong, M. H. Gee, K. M. Jude, M. M. Davis, J. T. Groves, W. A. 3rd Goddard, J. R. Heath, B. D. Evavold, R. D. Vale, K. C. Garcia, "Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding", Cell, vol. 174, no. 3, pp. 672-687, July, 2018. DOI: https://doi.org/10.1016/j.cell.2018.06.017
  26. Y. X. Tan, J. Zikherman, A. Weiss, "Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45", Cold Spring Harbor symposia on quantitative biology, vol. 78, pp.131-139, October, 2013. DOI: https://doi.org/10.1101/sqb.2013.78.020347
  27. A. k. Chakraborty, A. Weiss, "Insights into the initiation of TCR signaling", Nature Immunology, vol. 15, no. 9, pp. 798-807, September, 2014. DOI: https://doi.org/10.1038/ni.2940
  28. Q. Leupin, R. Zaru, T. Laroche, S. Müller, S. Valitutti, "Exclusion of CD45 form the T-cell receptor signaling area in antigen-stimulated T lymphocytes", Current Biology, vol. 10, no. 5, pp. 277-280, March, 2000. DOI: https://doi.org/10.1016/s0960-9822(00)00362-6
  29. N. Kashio, W. Matsumoto, S. Parker, D. M. Rothstein, "The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCR-zeta in vivo", Journal of biological chemistry, vol. 273, no. 50, pp. 33856-33863, December, 1998. DOI: https://doi.org/10.1074/jbc.273.50.33856
  30. Y. Wang, P. Johnson, "Expression of CD45 lacking the catalytic protein tyrosine phosphatase domain modulates Lck phosphorylation and T cell activation", Journal of biological chemistry, vol. 280, no. 14, pp. 14318-14324, April, 2005. DOI: https://doi.org/10.1074/jbc.M413265200
  31. K. Stepanova, M.Sinkora, "The expression of CD25, CD11b, SWC1, SWC7, MHC-II and family of CD45 molecules can be used to characterize different stages of characterize different stages ${\gamma}{\delta}$ T lymphocytes in pigs", Developmental and comparative immunology, vol. 36, no. 4, pp. 728-740, April, 2012. DOI: https://doi.org/10.1016/j.dci.2011.11.00
  32. W. Gerner, T. Kaser, A. Saalmuller, "Porcine T lymphocytes and NK cells- An update", Developmental and comparative immunology, vol. 33, no. 3, pp. 310-320, March, 2009. DOI: https://doi.org/10.1016/j.dci.2008.06.003
  33. L. Piriou-Guzylack, H. Salmon, "Membrane markers of the immune cells in swine: an update", Veterinary research, vol. 39, no. 6, pp. 54. December, 2008. DOI: https://doi.org/10.1051/vetres:2008030
  34. M. Sinkora, J. E. Butler, "Progress in the use of swine in developmental immunology of B and T lymphocytes", Developmental and comparative immunology, vol. 58, pp. 1-17, May, 2016. DOI: https://doi.org/10.1016/j.dci.2015.12.003
  35. Y. Chen, T. Song, Y. L. Xiao, X. Wan, L. Yang, J. Li, G. Zeng, P. Fang, Z. Z. Wang, R. Gao, "Enhancement of immune response of piglets to PCV-2" vaccine by porcine IL-2 and fusion IL-4/6 gene entrapped in chitosan nanoparticles", Research in veterinary science, vol. 117, pp. 224-232, April, 2018. DOI: https://doi.org/10.1016/j.rvsc.2017.12.004
  36. P. Lithgow, H. Takamatsu, D. Werling, L. Dixon, D. Chapman, "Correlation of cell surface marker expression with African swine fever virus infection", Veterinary microbiology, vol. 168, no. 2, pp. 413-419, January, 2014. DOI: https://doi.org/10.1016/j.vetmic.2013.12.001
  37. J. Pei, B. H. Kim, N. V. Grishin, "PROMALS3D: a tool for multiple protein sequence and structure alignments", Nucleic acids research, vol. 36, no. 7, pp. 2295-2300. April, 2008. DOI: https://doi.org/10.1093/nar/gkn072
  38. M. Y. Shen, A. Sali, "Statistical potential for assessment and prediction of protein structures", Protein science, vol. 15, no. 11, pp. 2507-2524, November, 2006. DOI: https://doi.org/10.1110/ps.062416606
  39. R. Luthy, J. U. Bowie, D. Eisenberg, "Assessment of protein models with three-dimensional profiles", Nature, vol. 356, no. 6364, pp. 83-85, March, 1992. DOI: https://doi.org/10.1038/356083a0
  40. V. B. Chen, W. B. Arendall 3rd, J. J. Headd, D. A. Keedy, R. M. Immomino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, "Molprobity: all-atom structure validation for macromolecular crystallography", Acta Crystallographica Section D Biological crystallography Vol. 66, no. pt 1, pp. 12-21, January, 2010. DOI: https://doi.org/10.1107/S0907444909042073
  41. G. Jiang, J. den Hertog, T. Hunter, "Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface", Molecular and cellular biology, Vol. 20, no. 16, pp.5917-5929. August, 2000. DOI: https://doi.org/10.1128/mcb.20.16.5917-5929.2000
  42. J. Felberg, D. C. Lefebvre, M. Lam, Y. Wang, D. H. Ng, D. Birkenhead, J. L. Cross, P. Johnson, "Subdomain X of the kinase domain of Lck binds CD45 and facilitates dephosphorylation", Journal of biological chemistry, Vol. 279, no. 5, pp. 3455-3462. January, 2004. DOI: https://doi.org/10.1074/jbc.M309537200
  43. Y. Wang, W. Guo, L. Liang, W. J. Esselman, "Phosphorylation of CD45 by casein kinase 2. modulation of activity and mutational analysis", Journal of biological chemistry, vol. 274, no. 11, pp. 7454-7461, March, 1999. DOI: https://doi.org/10.1074/jbc.274.11.7454
  44. A. Alonso, J. Sasin, N. Bottini, I. Friedberg, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, T. Mustelin, "Protein tyrosine phosphatases in the human genome", Cell, vol. 117, no. 6, pp. 699-711, June, 2004. DOI: https://doi.org/10.1016/j.cell.2004.05.018
  45. L. Tautz, D. A. Critton, S. Grotegut, "Protein tyrosine phosphatases: structure, function, and implication in human disease", Methods in molecular biology, vol. 1053, pp. 179-221, 2013. DOI: https://doi.org/10.1007/978-1-62703-562-0_13
  46. Z. Hegedus, V. Chitu, G. K. Toth, C. Finta, G. Varadi, I. Ando, E. Monostori, "Contribution of kinase and the CD45 phosphatase to the generation of tyrosine phosphorylation patterns in the T-cell receptor complex ${\zeta}$ chain ", Immunology Letters, Vol. 67, no. 1, pp. 31-39. March, 1999. https://doi.org/10.1016/S0165-2478(98)00138-2
  47. A. Z. Barr, E. Ugochukwu, W. H. Lee, O. N. King, P. Filippakopoulos, I. Alfano, P. Savitsky, N. A. Burgess-Brown, S. Muller, S. knapp, "Large-scale structural analysis of the classical human protein tyrosine phosphatome", Cell, 2009, Vol. 136, no. 2, pp. 352-363. DOI: https://doi.org/10.1016/j.cell.2008.11.038
  48. S. P. Cordoba, K. Choudhuri, H. Zhang, M. Bridge, A. B. Basat, M. L. Dustin, P. A. van der Merwe, "The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor", Blood, Vol. 121, no. 21, pp. 4295-4302. May, 2013 DOI: https://doi.org/10.1182/blood-2012-07-442251
  49. A. A. Melton, J. Jackson, J. Wang, K. W. Lynch, "Combinatorial control of signal-induced exon repression by hnRNPL and PSF", Molecular and cellular biology, Vol. 27, no. 19, pp. 6972-6984. October, 2007 DOI: https://doi.org/10.1128/MCB.00419-07
  50. S. Oberdoerffer, L. F. Moita, D. Neems, R. P. Freitas, N. Hacohen, A. Rao, "Regulation of CD45 alternative splicing by heterogenous ribonucleoprotein, hnRNPLL", Science, Vol. 321, no. 5889, pp. 686-691. August, 2008 DOI: https://doi.org/10.1126/science.1157610
  51. J. L. Cross, K. Kott, T. Miletic, P. Johnson, "CD45 regulates TLR-induced proinflammatory cytokine and IFN-beta secretion in dendritic cells", Journal of immunology, Vol. 180, no. 12, pp. 8020-8029. June, 2008 DOI: https://doi.org/10.4049/jimmunol.180.12.8020