DOI QR코드

DOI QR Code

Fabrication of a sterling silver ring with folding process

폴딩 기법을 이용한 스털링실버 링 제조 공정

  • Kim, Ik gyu (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Eun-Seok (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 김익규 (서울시립대학교 신소재공학과) ;
  • 김광배 (서울시립대학교 신소재공학과) ;
  • 김은석 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2019.07.04
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

A novel folding process is proposed using a repeated cold-die forging and annealing to form a sterling silver ring. Sterling silver plate was cut into a doughnut shape, and lattices with 0.43-mm line-width were imprinted on it. The sample was folded by forging using dies with slopes of $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$ and annealing. For comparison, samples were also fabricated without annealing. Strain was identified by measuring the length of lattices. Vernier calipers, a Vickers hardness tester, an optical microscope, and a UV-VIS colorimeter were used to determine the size, hardness, microstructure, and body color. Without annealing, cracks occurred. However, successful deformation was possible when annealing was used. The results of macro strain measurements show that the outer diameter and width decreased, while the inner diameter and thickness increased after the final process. The maximum strain was increased 0.128 toward the parallel direction. The Vickers hardness decreased after annealing and increased after the folding process. The microstructure results showed that the grain size increased after annealing but decreased after folding. The color difference based on the Lab index was under 10 for all processes. Eventually, a doughnut-shaped silver plate was successfully deformed into a ring shape by the folding process.

스털링실버 판재를 콜드-다이 포징(cold-die forging)과 어닐링을 반복하는 폴딩공정을 이용하여 반지모양으로 가공하는 신공정을 제안하였다. 도넛모양으로 재단된 판재에 선폭 $0.43{\mu}m$인 격자를 각인하였다. 그 후 경사가 $45^{\circ}$, $60^{\circ}$, $75^{\circ}$인 다이(die)를 이용한 포징과 어닐링을 반복하여 폴딩하였다. 비교를 위해 어닐링을 생략한 시편 또한 준비하였다. 각인된 격자의 길이 변화를 측정하여, 공정과정에 따른 스트레인을 확인하였다. 버니어캘리퍼스, 비커스 경도 측정기(Vickers hardness tester)와 광학현미경, UV-VIS 컬러미터(colormeter)를 이용하여 크기, 경도, 미세구조, 표면색을 확인하였다. 어닐링을 생략하는 경우 크랙이 발생하였으나, 어닐링을 부가하는 경우 성공적으로 변형이 가능했다. 시편의 거시적인 스트레인을 분석한 결과, 최종공정 후 외경의 길이와 두께는 각각 감소하였지만, 내경의 길이와 폭은 각각 증가하였다. 시편의 미시적인 스트레인은 수평 방향에서 최대 +0.128 만큼 증가하였다. 비커스 경도의 경우, 열처리 시에는 감소하지만 폴딩공정 후에는 증가하는 경향을 나타내었다. 미세구조 관찰 결과 어닐링 직후 결정립의 크기가 증가하고 폴딩공정 직후는 감소하였다. Lab지수를 기준으로 색차는 모든 공정에서 10 이하로 확인되었다. 결국 도넛형태의 은 판재를 폴딩공정을 이용하여 성공적인 반지모양의 주얼리 제조가 가능하였다.

Keywords

References

  1. I. T. Ferguson, B. Derby, "Diffusion bonded Mokume Gane decorative metal laminate", Material science and technology, Vol.14, No. 6, pp.510-517, 1998. DOI: https://doi.org/10.1179/026708398790290181
  2. O. Untracht, "Jewelry conception and technology", Doubleday, USA, pp.366, 1985.
  3. E. Eruc, R. Shivpuri, "A summary of ring rolling technology", International journal of machine tools & manufacture, Vol.32, No. 3, pp.379-398, 1992. DOI: https://doi.org/10.1016/0890-6955(92)90009-6
  4. P. J. Leitao, A. C. Teixeira, J. M. C. Rodrigues, P. A. F. Martins, "Development of an industrial process for minting a new type of bimetallic coin", Journal of materials processing technology, Vol.70, No. 1-3, pp.178-184, 1997. DOI: https://doi.org/10.1016/S0924-0136(97)02914-2
  5. M. A. Hassan, N. Takakura, K. Yamaguchi, "Friction aided deep drawing of sheet metals using polyurethane ring and auxiliary metal punch", International journal of machine tools & manufacturing, Vol.42, No. 5, pp.625-631, 2002. DOI: https://doi.org/10.1016/S0890-6955(01)00145-6
  6. M. Merklein, J. M. Allwood, B. A. Behrens, A. Brosius, H. Hagenah, K. Kuzmari, K. Mori, A. E. Tekkaya, A. Weckenmann, "Bulk forming of sheet metal", CIRP Anneal, Vol.61 ,No. 2, pp.725-745, 2012. DOI: https://doi.org/10.1016/j.cirp.2012.05.007
  7. A. Danno, S. Berner, K. S. Fong, W. Ta. Yap, "Multi-stage cold forging of thin-walled components", Procedia engineering, Vol.81, pp.407-412, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.10.014
  8. A. E. Marquardt, E. M. Breitung, T. Dr. Weisser, G. Gates, R. J. Phaneuf, "Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers", Heritage science, Vol.3, No. 37, 2015. DOI: https://doi.org/10.1186/s40494-015-0066-x
  9. S. Praipruk, G. Lothongkum, E. Nisaratanaporn, B. Lohwongwatana, "Investigation of supersaturated silver alloys for high hardness jewelry application", Journal of metal, materials and minerals, Vol.23, No. 2, pp.67-73, 2013. http://www.ojs.materialsconnex.com/index.php/jmm m/article/view/95/66
  10. A. A. Nassar, A. N. Jarrad, "Study the effect of cold working and heat treatment on the mechnical properties of copper nickel alloys", International journal of current engineering & technology, Vol.5, No. 4, pp.2582-2586, 2015. DOI: https://doi.org/10.17605/OSF.IO/WHTZV
  11. G. S. Sun, L. X. Du, J. Hu, H. Xie, H. Y. Wu, R. D. K. Misra, "Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment", Materials characterization, Vol.110, pp.228-235, 2015. DOI: https://doi.org/10.1016/j.matchar.2015.11.001
  12. T. Murakami, R. Sahara, D. Harako, M. Akiba, T. Narushima, C. Ouchi, "The effect of solute elements on hardness and grain size in platinum based binary alloys", Materials Transaction, Vol.49, No. 3, pp.538-547, 2008. DOI: https://doi.org/10.2320/matertrans.MRA2007265
  13. J. Brelle, A. Blatter, R. Ziegenhagen, "Precious palladium aluminium based alloys with high hardness and workability", Platinum metal Research, Vol.53, No. 4, pp.189-197, 2009. DOI: https://doi.org/10.1595/147106709X472192