자가-치유 고분자 제조 기술

  • 이상협 (전북대학교 공과대학 화학공학부) ;
  • 이대수 (전북대학교 공과대학 화학공학부)
  • Published : 2019.09.30

Abstract

Keywords

References

  1. DOHLER, D.; MICHAEL, Philipp; BINDER, Wolfgang. Principles of self-healing polymers. Self-Healing Polymers, 2013, 5-60.
  2. WU, Dong Yang; MEURE, Sam; SOLOMON, David. Self-healing polymeric materials: a review of recent developments. Progress in polymer science, 2008, 33.5: 479-522. https://doi.org/10.1016/j.progpolymsci.2008.02.001
  3. Market value forecast of polyurethane worldwide from 2016 to 2021 (in billion U.S. dollars), https://www.statista.com/statistics/720449/global-polyurethane-market-size-forecast/
  4. DRY, Carolyn M.; SOTTOS, Nancy R. Passive smart self-repair in polymer matrix composite materials. In: Smart Structures and Materials 1993: Smart Materials. International Society for Optics and Photonics, 1993. p. 438-445.
  5. DRY, Carolyn. Procedures developed for self-repair of polymer matrix composite materials. Composite structures, 1996, 35.3: 263-269.
  6. WHITE, Scott R., et al. Autonomic healing of polymer composites. Nature, 2001, 409.6822: 794. https://doi.org/10.1038/35057232
  7. YANG, Jinglei, et al. Microencapsulation of isocyanates for self-healing polymers. Macromolecules, 2008, 41.24: 9650-9655. https://doi.org/10.1021/ma801718v
  8. THEN, Sonja, et al. Optimization of microencapsulation process for self-healing polymeric material. Sains Malaysiana, 2011, 40.7: 795-802.
  9. CARUSO, Mary M., et al. Mechanically-induced chemical changes in polymeric materials. Chemical Reviews, 2009, 109.11: 5755-5798. https://doi.org/10.1021/cr9001353
  10. YAN, Xuzhou, et al. Stimuli-responsive supramolecular polymeric materials. Chemical Society Reviews, 2012, 41.18: 6042-6065. https://doi.org/10.1039/c2cs35091b
  11. BURATTINI, Stefano, et al. Healable polymeric materials: a tutorial review. Chemical Society Reviews, 2010, 39.6: 1973-1985. https://doi.org/10.1039/b904502n
  12. BOIKO, Yuri M.; PRUD'HOMME, Robert E. Surface mobility and diffusion at interfaces of polystyrene in the vicinity of the glass transition. Journal of Polymer Science Part B: Polymer Physics, 1998, 36.4: 567-572. https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<567::AID-POLB3>3.0.CO;2-M
  13. COMÍ, Marc, et al. Adaptive bio-based polyurethane elastomers engineered by ionic hydrogen bonding interactions. European Polymer Journal, 2017, 91: 408-419. https://doi.org/10.1016/j.eurpolymj.2017.04.026
  14. LIN, Yinlei; LI, Guangji. An intermolecular quadruple hydrogen-bonding strategy to fabricate selfhealing and highly deformable polyurethane hydrogels. Journal of Materials Chemistry B, 2014, 2.39: 6878-6885. https://doi.org/10.1039/C4TB00862F
  15. SONG, Yan, et al. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen‐Bonding Interactions. Angewandte Chemie International Edition, 2018, 57.42: 13838-13842. https://doi.org/10.1002/anie.201807622
  16. BODE, Stefan, et al. Self‐healing polymer coatings based on crosslinked metallosupramolecular copolymers. Advanced Materials, 2013, 25.11: 1634-1638. https://doi.org/10.1002/adma.201203865
  17. ENKE, Marcel, et al. Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions. Polymer, 2015, 69: 274-282. https://doi.org/10.1016/j.polymer.2015.03.068
  18. BURNWORTH, Mark, et al. Optically healable supramolecular polymers. Nature, 2011, 472.7343:334.
  19. CHUJO, Yoshiki; SADA, Kazuki; SAEGUSA, Takeo. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules, 1990, 23.10: 2636-2641. https://doi.org/10.1021/ma00212a007
  20. DU, Pengfei, et al. Diels-Alder‐based crosslinked self‐healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. Journal of Applied Polymer Science, 2014, 131.9.
  21. HEO, Yunseon; SODANO, Henry A. Self‐healing polyurethanes with shape recovery. Advanced Functional Materials, 2014, 24.33: 5261-5268. https://doi.org/10.1002/adfm.201400299
  22. LI, Jinhui, et al. Thermally reversible and self‐healing novolac epoxy resins based on Diels-Alder chemistry. Journal of Applied Polymer Science, 2015, 132.26.
  23. BLAISZIK, Benjamin J., et al. Self-healing polymers and composites. Annual review of materials research, 2010, 40: 179-211. https://doi.org/10.1146/annurev-matsci-070909-104532
  24. PATRICK, Jason F., et al. Polymers with autonomous life-cycle control. Nature, 2016, 540.7633:363. https://doi.org/10.1038/nature21002
  25. CHEN, Xiangxu, et al. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295.5560: 1698-1702. https://doi.org/10.1126/science.1065879
  26. PETERSON, Amy M.; JENSEN, Robert E.; PALMESE, Giuseppe R. Reversibly Cross-Linked Polymer Gels as Healing Agents for Epoxy−Amine Thermosets. ACS applied materials & interfaces, 2009, 1.5: 992-995. https://doi.org/10.1021/am900104w
  27. LEI, Zhou Qiao, et al. Room-temperature self-healableand remoldable cross-linked polymer based onthe dynamic exchange of disulfide bonds. Chemistryof Materials, 2014, 26.6: 2038-2046.
  28. REKONDO, Alaitz, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Materials Horizons, 2014, 1.2:237-240. https://doi.org/10.1039/C3MH00061C
  29. CANADELL, Judit; GOOSSENS, Han; KLUMPERMAN, Bert. Self-healing materials based on disulfide links. Macromolecules, 2011, 44.8: 2536-2541. https://doi.org/10.1021/ma2001492
  30. MICHAL, Brian T., et al. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2013, 2.8: 694-699. https://doi.org/10.1021/mz400318m
  31. IMBERNON, Lucie; NORVEZ, Sophie; LEIBLER, Ludwik. Stress relaxation and self-adhesion of rubbers with exchangeable links. Macromolecules, 2016, 49.6: 2172-2178. https://doi.org/10.1021/acs.macromol.5b02751
  32. MONTARNAL, Damien, et al. Silica-like malleable materials from permanent organic networks. Science, 2011, 334.6058: 965-968. https://doi.org/10.1126/science.1212648
  33. CAPELOT, Mathieu, et al. Metal-catalyzed transesterification for healing and assembling of thermosets. Journal of the American Chemical Society, 2012, 134.18: 7664-7667. https://doi.org/10.1021/ja302894k
  34. CAPELOT, Mathieu, et al. Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 134.7: 789-792. https://doi.org/10.1021/mz300239f
  35. ALTUNA, F. I.; HOPPE, C. E.; WILLIAMS, R. J. J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Advances, 2016, 6.91: 88647-88655. https://doi.org/10.1039/C6RA18010H
  36. LEGRAND, Aureelie; SOULIEE-ZIAKOVIC, Corinne. Silica-Epoxy vitrimer nanocomposites. Macromolecules, 2016, 49.16: 5893-5902. https://doi.org/10.1021/acs.macromol.6b00826
  37. CHEN, Qiaomei, et al. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chemical science, 2017, 8.1: 724-733. https://doi.org/10.1039/C6SC02855A
  38. FORTMAN, David J., et al. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. Journal of the American Chemical Society, 2015, 137.44:14019-14022. https://doi.org/10.1021/jacs.5b08084
  39. YAN, Peiyao, et al. Multifunctional polyurethanevitrimers completely based on transcarbamoylation of carbamates: Thermally-induced dual-shape memory effect and self-welding. RSC Advances, 2017, 7.43: 26858-26866. https://doi.org/10.1039/C7RA01711A
  40. CHEN, Xi, et al. Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polymer Chemistry, 2017, 8.41: 6349-6355. https://doi.org/10.1039/C7PY01160A