DOI QR코드

DOI QR Code

Surface Modified Glass-Fiber Effect on the Mechanical Properties of Glass-Fiber Reinforced Polypropylene Composites

  • 투고 : 2019.06.15
  • 심사 : 2019.07.02
  • 발행 : 2019.09.30

초록

To improve the mechanical properties of glass-fiber-reinforced polypropylene (PP) composites through interfacial adhesion control between the PP matrix and glass fiber, the surface of the glass fiber was modified with PP-graft-maleic anhydride (MAPP). Surface modification of the glass fiber was carried out through the well-known hydrolysis-condensation reaction using 3-aminopropyltriethoxy silane, and then subsequently treated with MAPP to produce the desired MAPP-anchored glass fiber (MAPP-a-GF). The glass-fiber-reinforced PP composites were prepared by typical melt-mixing technique. The effect of chemical modification of the glass fiber surface on the mechanical properties of composites was investigated. The resulting mechanical and morphological properties showed improved interfacial adhesion between the MAPP-a-GF and PP matrix in the composites.

키워드

참고문헌

  1. P. K. Mallick, "Fiber Reinforced Composites. Materials, Manufacturing and Design", Marcel Dekker, New York, 1997.
  2. W. D. Callister, "Materials Science and Engineering. An Introduction", 6th Ed., John Wiley & Sons, Hoboken, 2003.
  3. D. Hull and T. W. Clyne, "An Introduction to Composite Materials", 2nd Ed., Cambridge University Press, Cambridge, 1996.
  4. M. Jawaid and H. Abdul Khalil, "Cellulose/Synthetic Fiber Reinforced Polymer Hybrid Composite: A Review", Carbohyd. Polym., 1, 1 (2011). https://doi.org/10.1016/0144-8617(81)90010-2
  5. H. Takashima, K. Miyagaia, T. Hashida, and V. Li, "A Design Approach for the Mechanical Properties of Polypropylene Discontinuous Fibre Reinforced Cementitious Composites by Extrusion Moulding", Eng. Fract. Mech., 70, 853 (2003). https://doi.org/10.1016/S0013-7944(02)00154-6
  6. J. Almeida, R. Almeidab, and W. Limab, "Effect of Water Absorption of the Mechanical Behaviour of Fiberglass Pipes Used for Offshore Service Waters", Compos Struct., 83, 221 (2008). https://doi.org/10.1016/j.compstruct.2007.04.020
  7. J. B. Shao, T. Liu, and S. J. Zhang, "Effect of PP Grafting Maleic Anhydride on Property of Glass Fiber Reinforced Polypropylene Materials", China Synthetic Resin Plast., 23, 50 (2006).
  8. V. Tesrki, N. E. Zafeiropoulos, and F. Simon, "A Study of the Effect of Acetylation and Propionylation Surface Treatment on Natural Fibers", Compos. Part A, 36, 1110 (2005). https://doi.org/10.1016/j.compositesa.2005.01.004
  9. S. M. R. Khalili, R. F. Eslami, and S. Rafiezadeh, " An Experimental Study on the Behavior of PP/EPDM/JUTE Composits in Impact, Tensile and Bending Loadings", J. Reinf. Plast. Compos., 30, 1341 (2011). https://doi.org/10.1177/0731684411411746
  10. R. Xu, F. Xing, and H. Z. Lin, "Study on the Interfacial Modifications of PP/GF Composite System (II)", Guangzhou Chem. Ind., 28, 13 (2000).
  11. J. Li, Y. Huang, Z. Xu, and Z. Wang, "High-energy Radiation Technique Treat on the Surface of Carbon Fiber", Mater. Chem. Phys., 94, 315 (2005). https://doi.org/10.1016/j.matchemphys.2005.05.007
  12. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, "Interfacial Evaluation of Modified Jute and Hemp Fiber/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PPMAPP) Composites using Micromechanical Technique and Nondestructive Acoustic Emission", Compos. Sci. Technol., 66, 2686 (2006). https://doi.org/10.1016/j.compscitech.2006.03.014
  13. J. G. Lglesias, B. J. Gonzalez, and A. J. Aznar, "Effect of Glass Fiber Surface Treatments on Mechanicals", J. Collod. Interface Sci., 250, 251 (2002). https://doi.org/10.1006/jcis.2002.8332
  14. J.-S. Yeo and S.-H. Hwang, "Preparation and Characteristics of Polypropylene-graft-maleic anhydride Anchored Microfibriled Cellulose: Its Composites with Polypropylene", J. Adhes. Sci. Technol., 29, 185 (2015). https://doi.org/10.1080/01694243.2014.980632
  15. J.-S. Yeo, D.-W. Seong, and S.-H. Hwang, "Chemical Surface Modification of Lignin Particles and Its Application as Filler in the Polypropylene Composites", J. Ind. Eng. Chem., 31, 80 (2015). https://doi.org/10.1016/j.jiec.2015.06.010
  16. R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, "Activation Energy and Crystallization Kinetics of Untreated and Treated Oil Palm Fiber Reinforced Phenol Formaldehyde Composites", Mater. Sci. Eng. A., 277, 77 (2000). https://doi.org/10.1016/S0921-5093(99)00556-0
  17. G. H. D. Tonoli, U. P. Rodrigues Filho, H. Savastano, J. Bras, M. N. Belgacem, and F. A. Lahr, "Impact of Bleaching Pine Fiber on the Fiber/cement Interface", Compos. Part A., 40, 2046 (2009). https://doi.org/10.1016/j.compositesa.2009.09.016
  18. N. Rasana, K. Jayanarayanan, and A. Pegoretti, "Non-isothermal Crystallization Kinetics of Polypropylene/Shor Glass Fiber/Multiwalled Carbon Nanotube Composites", RSC Adv., 8, 39127 (2018). https://doi.org/10.1039/C8RA07243D
  19. S. Jacob, K. K. Suma, J. M. Mendaz, A. George, and K. E. George, "Modification of Polypropylene/Glass Fiber Composites with Nanosilica", Macromol. Symp., 277, 138 (2009). https://doi.org/10.1002/masy.200950317
  20. L. H. Zhu, J. F. Sheng, Z. F. Guo, X. S. Ju, S. Li, Y. F. Chem, and J. Luo, "Properties of Polypropylene and Surface Modified Glass-fibre Composites", Polym. Polym. Compos., 22, 381 (2014). https://doi.org/10.1177/096739111402200403