DOI QR코드

DOI QR Code

Extraction Methods of Organic Components from Rubber Composites and Analysis of the Extract Using Gas Chromatography/Mass Spectrometry

  • Received : 2019.06.20
  • Accepted : 2019.07.19
  • Published : 2019.09.30

Abstract

Rubber articles contain various organic additives such as antidegradants, curing agents, and processing aids. It is important to extract and analyze these organic additives. In this paper, various extraction methods of organic additives present in rubber composites were introduced (solvent extraction, Soxhlet extraction, headspace extraction, and solid-phase microextraction), and the extracts were characterized using gas chromatography/mass spectrometry (GC/MS). Solvent and Soxhlet extractions are easy-to-perform and commonly used methods. Efficiency of solvent extraction varies according to the type of solvent used and the extraction conditions. Soxhlet extraction requires a large volume of solvent. Headspace sampling is suitable for extracting volatile organic compounds, while solid-phase extraction is suitable for extracting specific chemicals. GC/MS is generally used for characterizing the extract of a rubber composite because most components of the extract are volatile and have low molecular weights. Identification methods of chemical structures of the components separated by GC column were also introduced.

Keywords

References

  1. R. P. Lattimer and R. E. Harris, "Analysis of components in rubber compounds using mass spectrometry", Rubber Chem. Technol., 62, 548 (1989). https://doi.org/10.5254/1.3536258
  2. M. Pajtasova, Z. Micicova, D. Ondrusova, B. Pecusova, A. Feriancova, L. Ranik, and S. Domcekova, "Study of properties of fillers based on natural bentonite and their effect on the rubber compounds", Procedia Eng., 177, 470 (2017). https://doi.org/10.1016/j.proeng.2017.02.247
  3. M. M. Kamal, J. Clarke, and M. A. Ahmad, "Comparison of properties of natural rubber compounds with various fillers", J. Rubb. Res., 12, 27 (2009).
  4. J. Kruzelak, R. Sykora, and I. Hudec, "Vulcanization of rubber compounds with peroxide curing systems", Rubber Chem. Technol., 90, 60 (2017). https://doi.org/10.5254/rct.16.83758
  5. L. Fishbein, "Chemicals used in the rubber industry", Sci. Total Environ., 101, 33 (1991). https://doi.org/10.1016/0048-9697(91)90100-S
  6. V. Mohan, "Studies on new processing aids and other compounding ingredients in special purpose rubbers", Ph. D. Thesis, Cochin University of Science & Technology, 2001.
  7. F. Ignatz-Hoover, B. H. To, R. N. Datta, A. J. D. Hoog, N. M. Huntink, and A. G. Talma, "Chemical additives migration in rubber", Rubber Chem. Technol., 76, 747 (2003). https://doi.org/10.5254/1.3547765
  8. J. J. Leyden, "Analysis of steelcord-rubber interface by SEM/EDX; controlled experiments", Akron Rubber Development Laboratory, Inc., 2000.
  9. F. Motiee, S. Taghvaei-Ganjali, and M. Malekzadeh, "Investigation of correlation between rheological properties of rubber compounds based on natural rubber/styrene-butadiene rubber with their thermal behaviors", Int. J. Ind. Chem., 4, 1 (2013). https://doi.org/10.1186/2228-5547-4-1
  10. S. Ezzoddin, A. Abbasian, M. Aman-Alikhani, and S. T. Ganjali, "The influence of non-carcinogenic petroleumbased process oils on tire compounds' performance", Iran. Polym. J., 22, 697 (2013). https://doi.org/10.1007/s13726-013-0168-9
  11. X. S. Yang, W. O. patent 2011078859A1 (2009).
  12. J-H. Wu, C-H. Li, H-T. Chiu, Z-J. Shong, and P-A. Tsai, "Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers: dynamic properties of rubber vibration isolators and antivibration performance", J. Thermoplast. Compos. Mater., 22, 503 (2009). https://doi.org/10.1177/0892705709105966
  13. I. Kurimoto, T. Yamaguchi, N. Inui, H. Nagasaki, and S. Yachigo, E. P. patent 0332052A2 (1989).
  14. Cancarb Technical Bulletin, "Natural rubber and chloroprene wiper blades".
  15. A. N. Theodore, M. A. Samus, and P. C. Killgoar, "Environmentally durable elastomer materials for windshield wiper blades", Ind. Eng. Chem. Res., 31, 2759 (1992). https://doi.org/10.1021/ie00012a020
  16. K. A. Ames, "Elastomers for shoe application", Rubber Chem. Technol., 77, 413 (2004). https://doi.org/10.5254/1.3547832
  17. M. Maiti, R. V. Jasra, S. K. Kusum, and T. K. Chaki, "Microcellular foam from ethylene vinyl acetate/polybutadiene rubber (EVA/BR) based thermoplastic elastomers for footwear applications", Ind. Eng. Chem. Res., 51, 10607 (2012). https://doi.org/10.1021/ie300396m
  18. O. H. Nautiyal, "Fragrant rubber sole with new formulation employing EVA crump", American Journal of Polymer Science, 2, 14 (2012). https://doi.org/10.5923/j.ajps.20120202.03
  19. V. S. Javier, "High abrasion oil resistant rubber compound for direct molded sole combat footwear", Defense Technical Information Center, ADA042426, 1976.
  20. M. Brown, "Compounding of ethylene-propylene polymers for electrical applications", IEEE ELECTR INSUL M., 10, 16 (1994). https://doi.org/10.1109/57.259977
  21. R. A. Bernstorf and D. Ryan, "Silicon compounds for highvoltage insulators: compounding silicon rubber", Hubbell Power Systems. Inc., 2007.
  22. P. Kusch, "Identification of organic additives in nitrile rubber materials by pyrolysis-GC-MS", LC GC N Am., 31, 248 (2013).
  23. K. D. Bartle and P. Myers, "History of gas chromatography", Trends Anal. Chem., 21, 547 (2002). https://doi.org/10.1016/S0165-9936(02)00806-3
  24. J. J. Jimenez, J. L. Bernal, M. J. del Nozal, M. T. Martin, and A. L. Mayorga, "Solid-phase microextraction applied to the analysis of pesticide residues in honey using gas chromatography with electron-capture detection", J. Chromatogr. A, 829, 269 (1998). https://doi.org/10.1016/S0021-9673(98)00826-7
  25. A. A. Boyd-Boland, S. Magdic, and J. B. Pawliszyn, "Simultaneous determination of 60 pesticides in water using solid-phase microextraction and gas chromatography-mass spectrometry", Analyst, 121, 929 (1996). https://doi.org/10.1039/AN9962100929
  26. M. Vitali, M. Guidotti, R. Giovinazzo, and O. Cedrone, "Determination of pesticide residues in wine by SPME and GC/MS for consumer risk assessment", Food A ddit. Contam, 15, 280 (1998). https://doi.org/10.1080/02652039809374642
  27. A. L. Simplicio and L. V. Boas, "Validation of a solid-phase microextraction method for the determination of organophosphorus pesticides in fruits and fruit juice", J. Chromatogr. A, 833, 35 (1999). https://doi.org/10.1016/S0021-9673(98)00941-8
  28. L. Urruty, M. Montury, M. Braci, J. Fournier, and J. M. Dournel, "Comparison of two recent solventless methods for the determination of procymidone residues in wines: SPME/GC/MS and ELISA tests", J. Agric. Food Chem., 45, 1519 (1997). https://doi.org/10.1021/jf9609643
  29. R. Hu, B. Hennion, L. Urruty, and M. Montury, "Solid phase microextraction of pesticide residues from strawberries", Food Addit. Contam, 16, 111 (1999). https://doi.org/10.1080/026520399284154
  30. M. D. Carlo, A. Pepe, G. Sacchetti, D. Compagnone, D. Mastrocola, and A. Cichelli, "Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry", Food Chem., 111, 771 (2008). https://doi.org/10.1016/j.foodchem.2008.04.065
  31. Z. Guo, S. Wang, D. Wei, M. Wang, H. Zhang, P. Gai, and J. Duan, "Development and application of a method for analysis of phthalates in ham sausages by solid-phase extraction and gas chromatography-mass spectrometry", Meat Sci., 84, 484 (2010). https://doi.org/10.1016/j.meatsci.2009.10.002
  32. M. V. Russo, I. Notardonato, G. Cinelli, and P. Avino, "Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector", Anal. Bioanal. Chem., 402, 1373 (2012). https://doi.org/10.1007/s00216-011-5551-9
  33. M. V. Russo, I. Notardonato, P. Avino, and G. Cinelli, "Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection", Anal. Methods., 6, 7030 (2014). https://doi.org/10.1039/C4AY00926F
  34. P-G. Wu, X-D. Pan, B-J. Ma, L-Y. Wang, and J. Zhang, "Determination of phthalate esters in non-alcoholic beverages by GC-MS and optimization of the extraction conditions", Eur. Food Res. Technol., 238, 607 (2014). https://doi.org/10.1007/s00217-013-2139-y
  35. Y-L. Feng, J. Zhu, and R. Sensenstein, "Development of a headspace solid-phase microextraction method combined with gas chromatography mass spectrometry for the determination of phthalate esters in cow milk", Anal. Chim. Acta, 538, 41 (2005). https://doi.org/10.1016/j.aca.2005.02.020
  36. K. Holadova, G. Prokupkova, J. Hajslova, and J. Poustka, "Headspace solid-phase microextraction of phthalic acid esters from vegetable oil employing solvent based matrix modification", Anal. Chim. Acta, 582, 24 (2007). https://doi.org/10.1016/j.aca.2006.09.005
  37. J. J. Rios, A. Morales, and G. Marquez-Ruiz, "Headspace solid-phase microextraction of oil matrices heated at high temperature and phthalate esters determination by gas chromatography multistage mass spectrometry", Talanta, 80, 2076 (2010). https://doi.org/10.1016/j.talanta.2009.11.008
  38. S. Zhao, M. Wu, F. Zhao, and B. Zeng, "Electrochemical preparation of polyaniline-polypyrrole solid-phase microextraction coating and its application in the GC determination of several esters", Talanta, 117, 146 (2013). https://doi.org/10.1016/j.talanta.2013.08.060
  39. J. S. Ahn, L. Castle, D. B. Clarke, A. S. Lloyd, M. R. Philo, and D. R. Speck, "Verification of the findings of acrylamide in heated foods", Food Addit. Contam, 19, 1116 (2002). https://doi.org/10.1080/0265203021000048214
  40. Y. Zhang, Y. Ren, H. Zhao, and Y. Zhang, "Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry", Anal. Chim. Acta, 584, 322 (2007). https://doi.org/10.1016/j.aca.2006.10.061
  41. Y. Zhang, Y. Dong, Y. Ren, and Y. Zhang, "Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector", J. Chromatogr. A, 1116, 209 (2006). https://doi.org/10.1016/j.chroma.2006.03.042
  42. J. O. Fernandes and C. Soares, "Application of matrix solidphase dispersion in the determination of acrylamide in potato chips", J. Chromatogr. A, 1175, 1 (2007). https://doi.org/10.1016/j.chroma.2007.10.030
  43. L. Ceccon, "Quantitative determination of free volatile fatty acids from dairy products on a Nukol capillary column", J. Chromatogr., 519, 369 (1990). https://doi.org/10.1016/0021-9673(90)85166-S
  44. M. C. Martin-Hernandez, L. Alonso, M. Juarez, and J. Fontecha, "Gas chromatographic method for determining free fatty acids in cheese", Chromatographia, 25, 87 (1988). https://doi.org/10.1007/BF02259021
  45. C. de Jong and H. T. Badings, "Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis", J. High Resolut. Chromatogr., 13, 94 (1990). https://doi.org/10.1002/jhrc.1240130204
  46. I. Wretensjo, L. Svensson, and W. W. Christie, "Gas chromatographic-mass spectrometric identification of the fatty acids in borage oil using the picolinyl ester derivatives", J. Chromatogr. A, 521, 89 (1990). https://doi.org/10.1016/0021-9673(90)85067-6
  47. S. W. Park and K. C. Rhee, "A capillary GC determination of cyclopropenoid fatty acids in cottonseed oils", J. Food Sci., 53, 1497 (1988). https://doi.org/10.1111/j.1365-2621.1988.tb09308.x
  48. M. M. Mossoba, R. E. McDonald, J. Y. T. Chen, D. J. Armstrong, and S. W. Page, "Identification of quantitation of trans-9, trans-12-octadecadienoic acid methyl ester and related compounds in hydrogenated soybean oil and margarines by capillary gas chromatography/matrix isolation/fourier transform infrared spectroscopy", J. Agric. Food Chem., 38, 86 (1990). https://doi.org/10.1021/jf00091a016
  49. T. K. Choudhury, K. O. Gerhardt, and T. P. Mawhinney, "Solid-phase microextraction of nitrogen-and phosphoruscontaining pesticides from water and gas chromatographic analysis", Environ. Sci. Technol, 30, 3259 (1996). https://doi.org/10.1021/es960040w
  50. J. Beltran, F. J. Lopez, O. Cepria, and F. Hernandez, "Solidphase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples", J. Chromatogr. A, 808, 257 (1998). https://doi.org/10.1016/S0021-9673(98)00138-1
  51. R. Eisert and K. Levsen, "Determination of organophosphorus, triazine and 2,6-dinitroaniline pesticides in aqueous samples via solid-phase microextraction (SPME) and gas chromatography with nitrogen-phosphorus detection", Fresenius J. Anal. Chem., 351, 555 (1995). https://doi.org/10.1007/BF00322732
  52. S. Magdic, A. Boyd-boland, K. Jinno, and J. B. Pawliszyn, "Analysis of organophosphorus insecticides from environmental samples using solid-phase microextraction", J. Chromatogr. A, 736, 219 (1996). https://doi.org/10.1016/0021-9673(95)01349-0
  53. R. Eisert and K. Levsen, "Determination of pesticides in aqueous samples by solid-phase microextraction in-line coupled to gas chromatography-mass spectrometry", J. Am. Soc. Mass Spectrom., 6, 1119 (1995). https://doi.org/10.1016/1044-0305(95)00527-7
  54. M. T. Sng, F. K. Lee, and H. A. Lakso, "Solid-phase microextraction of organophosphorus pesticides from water", J. Chromatogr. A, 759, 225 (1997). https://doi.org/10.1016/S0021-9673(96)00727-3
  55. V. Lopez-Avila, R. Young, and W. F. Beckert, "On-line determination of organophosphorus pesticides in water by solid-phase microextraction and gas chromatography with thermionic-selective detection", J. High Resol. Chromatogr, 20, 487 (1997). https://doi.org/10.1002/jhrc.1240200905
  56. G. P. Jackson and A. R. J. Andrews, "New fast screening method for organochlorine pesticides in water by using solid-phase microextraction with fast gas chromatography and a pulsed-discharge electron capture detector", Analyst, 123, 1085 (1998). https://doi.org/10.1039/a706407a
  57. S. Magdic and J. B. Pawliszyn, "Analysis of organochlorine pesticides using solid-phase microextraction", J. Chromatogr. A, 723, 111 (1996). https://doi.org/10.1016/0021-9673(95)00857-8
  58. P. Popp, K. Kalbitz, and G. Oppermann, "Application of solid-phase microextraction and gas chromatography with electron-capture and mass spectrometric detection for the determination of hexachlorocyclohexanes in soil solutions", J. Chromatogr. A, 687, 133 (1994). https://doi.org/10.1016/0021-9673(94)00794-2
  59. C. Aguilar, S. Penalver, E. Pocurull, F. Borrull, and R. M. Marce, "Solid-phase microextraction and gas chromatography with mass spectrometric detection for the determination of pesticides in aqueous samples", J. Chromatogr. A, 795, 105 (1998). https://doi.org/10.1016/S0021-9673(97)00917-5
  60. B. D. Page and G. Lacroix, "Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices", J. Chromatogr. A, 757, 173 (1997). https://doi.org/10.1016/S0021-9673(96)00687-5
  61. C. Lesueur, M. Gartner, A. Metler, and M. Fuerhacker, "Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry", Talanta, 75, 284 (2008). https://doi.org/10.1016/j.talanta.2007.11.031
  62. R. Eisert and K. Levsen, "Development of a prototype system for quasi-continuous analysis of organic contaminants in surface or sewage water based on in-line coupling of solidphase microextraction to gas chromatography", J. Chromatogr. A, 737, 59 (1996). https://doi.org/10.1016/0021-9673(95)01342-3
  63. A. A. Boyd-Boland and J. B. Pawliszyn, "Solid-phase microextraction of nitrogen-containing herbicides", J. Chromatogr. A, 704, 163 (1995). https://doi.org/10.1016/0021-9673(95)00151-C
  64. I. J. Barnabas, J. R. Dean, I. A. Fowlis, and S. P. Owen, "Automated determination of s-triazine herbicides using solid-phase microextraction", J. Chromatogr. A, 705, 305 (1995). https://doi.org/10.1016/0021-9673(95)00279-V
  65. F. Guan, K. Watanabe, A. Ishii, H. Seno, T. Kumazawa, H. Hattori, and O. Suzuki, "Headspace solid-phase microextraction and gas chromatographic determination of dinitroaniline herbicides in human blood, urine and environmental water", J. Chromatogr. B, 714, 205 (1998). https://doi.org/10.1016/S0378-4347(98)00234-5
  66. R. W. Current and A. J. Borgerding, "Rapid-extraction highspeed GC analysis of volatile organic compounds in aqueous samples", Anal. Chem., 71, 3513 (1999). https://doi.org/10.1021/ac990111k
  67. E. Manoli and C. Samara, "Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis", Trends Anal. Chem., 18, 417 (1999). https://doi.org/10.1016/S0165-9936(99)00111-9
  68. J. W. M. Wegener, W. P. Cofino, E. A. Maier, and G. N. Kramer, "The preparation, testing and certification of two freshwater sediment reference materials for polycyclic aromatic hydrocarbons and polychlorinated biphenyls: BCR CRM 535 and CRM 536", Trends A nal. C hem., 18, 14 (1999).
  69. K. Riahi and N. Sellier, "Separation of isomeric polycyclic aromatic hydrocarbons by GC-MS: differentiation between isomers by positive chemical ionization with ammonia and dimethyl ether as reagent gases", Chromatographia, 47, 309 (1998). https://doi.org/10.1007/BF02466537
  70. A. Ozaki and T. Baba, "Alkylphenol and bisphenol A levels in rubber products", Food Addit Contam, 20, 92 (2003). https://doi.org/10.1080/0265203021000014798
  71. R. W. Wise and A. B. Sullivan, "Determination of amine type antidegradants by high-temperature gas chromatography", Rubber Chem. Technol., 35, 684 (1962). https://doi.org/10.5254/1.3539947
  72. R. P. Lattimer, E. R. Hooser, H. E. Diem, R. W. Layer, and C. K. Rhee, "Mechanisms of ozonation of N,N'-di-(1-methylheptyl)-p-phenylenediamine", Rubber Chem. Technol., 53, 1170 (1980). https://doi.org/10.5254/1.3535087
  73. N. Delaunay-Bertoncini, F. W. M. van der Wielen, P. de Voogt, B. Erlandsson, and P. J. Schoenmarkers, "Analysis of low-molar-mass materials in commercial rubber samples by soxhlet and headspace extractions followed by GC-MS analysis", J. Pharm. Biomed. Anal., 35, 1059 (2004). https://doi.org/10.1016/j.jpba.2004.03.025
  74. M. Myhre and D. A. MacKillop, "Rubber recycling", Rubber Chem. Technol., 75, 429 (2002). https://doi.org/10.5254/1.3547678
  75. R. P. Lattimer and R. E. Harris, "Identification of organic components in uncured rubber compounds using mass spectrometry", Rubber Chem. Technol., 61, 639 (1988). https://doi.org/10.5254/1.3536210
  76. H. L. Spell and R. D. Eddy, "Determination of additives in polyethylene by absorption spectroscopy", Anal. Chem., 32, 1811 (1960). https://doi.org/10.1021/ac50153a032
  77. B. B. Knudsen, C. Hametner, O. Seycek, A. Heese, H.-U. Koch, and K.-P. Peters, "Allergologically relevant rubber accelerators in single-use medical gloves", Contact Derm., 43, 9 (2000). https://doi.org/10.1034/j.1600-0536.2000.043001009.x
  78. J. E. Davey and M. J. R. Loadman, "Determination of residual extractable hydroxylamine in raw and vulcanised rubbers", J. Nat. Rubb. Res., 3, 1 (1988).
  79. E. R. J. Wils, A. G. Hulst, and A. L. de Jong, "Determination of mustard gas and related vesicants in rubber and paint by gas chromatography-mass spectrometry", J. Chromatogr., 625, 382 (1992). https://doi.org/10.1016/0021-9673(92)85226-J
  80. M. Mutsuga, C. Wakui, Y. Kawamura, and T. Maitani, "Isolation and identification of some unknown substances in disposable nitrile-butadiene rubber gloves used for food handling", Food Addit. Contam., 19, 1097 (2002). https://doi.org/10.1080/02652030210151886
  81. M-S. Kim, K-S. Sohn, J-H. Lee, I-S. Kim, and S-S. Choi, "A new method to identify PCA oil type through solvent extraction and separation skills in a SBR vulcanizate", Elastomers Compos., 47, 36 (2012). https://doi.org/10.7473/EC.2012.47.1.036
  82. M. Hakkarainen and S. Karlsson, "Gas chromatography in analysis of polymers and rubbers", encyclopedia of analytical chemistry, 2006.
  83. C. H. Scuracchio, D. A. Waki, and M. L. C. P. da Silva, "Thermal analysis of ground tire rubber devulcanized by microwaves", J. Therm. Anal. Calorim., 87, 893 (2007). https://doi.org/10.1007/s10973-005-7419-8
  84. T. Ozdemir, I. K. Akbay, H. Uzun, and I. A. Reyhancan, "Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests", Prog. Nucl. Energy, 89, 102 (2016). https://doi.org/10.1016/j.pnucene.2016.02.007
  85. R. P. Lattimer, R. E. Harris, and C. K. Rhee, "Identification of organic additives in rubber vulcanizates using mass spectrometry", Anal. Chem., 58, 3188 (1986). https://doi.org/10.1021/ac00127a059
  86. J. W. H. Zijp, "Application of paper chromatography to the identification of accelerators and antioxidants", Rubber Chem. Technol., 30, 705 (1957). https://doi.org/10.5254/1.3542716
  87. C. B. Airaudo, A. Gayte-Sorbier, R. Creusevau, and R. Dumont, "Identification of phenolic antioxidants in elastomers for pharmaceutical and medical use", Pharm. Res., 4, 237 (1987). https://doi.org/10.1023/A:1016460228801
  88. Restek, "A technical guide for static headspace analysis using GC", Lit. Cat. # 59895B, Restek Technical Guide.
  89. B. Kolb and L. S. Ettre, "Static headspace-gas chromatography: theory and practice", John Wiley & Sons, 2006.
  90. H. Upadhyay, A. A. Shah, A. Shah, P. Sharma, and G. Darwhekar, "A review on headspace chromatography for analysis of volatile oils", Int. J. of Pharm. Life Sci., 5, 3558 (2014).
  91. J. C. J. Bart, "Direct solid sampling methods for gas chromatographic analysis of polymer/additive formulations", Polym Test., 20, 729 (2001). https://doi.org/10.1016/S0142-9418(01)00027-7
  92. M. J. Sithersingh and N. H. Snow, "Headspace-Gas Chromatography", Gas Chromatography, 221 (2012).
  93. J. P. H. Linssen, L. Rijnen, A. Legger-Huiysman, and J. P. Roozen, "Combined GC and sniffing port analysis of volatile compounds in rubber rings mounted on beer bottles", Food Addit. Contam., 15, 79 (1998). https://doi.org/10.1080/02652039809374601
  94. S-S. Choi and Y-K. Kim, "Analysis of residual monomers in poly(acrylonitrile-co-butadiene-co-styrene)", Macromol. Res., 20, 585 (2012). https://doi.org/10.1007/s13233-012-0080-8
  95. N. H. Kamarulzaman, N. Le-Minh, and R. M. Stuetz, "Identification of VOCs from natural rubber by different headspace techniques coupled using GC-MS", Talanta, 191, 535 (2019). https://doi.org/10.1016/j.talanta.2018.09.019
  96. W. T. Trowell and J. N. Bernard, "The determination of tbutyl alcohol in peroxide-cured EPDM rubber using multiple headspace extraction capillary gas chromatography", J. Chromatogr. Sci., 28, 245 (1990). https://doi.org/10.1093/chromsci/28.5.245
  97. D. Feng, H. Yang, D. Qi, and Z. Li, "Extraction, confirmation, and screening of non-target compounds in silicon rubber teats by purge-and-trap and SPME combined with GCMS", Polym Test., 56, 91 (2016). https://doi.org/10.1016/j.polymertesting.2016.09.021
  98. R. Eisert and K. Levsen, "Solid-phase microextraction coupled to gas chromatography: a new method for the analysis of organics in water", J. Chromatogr. A, 733, 143 (1996). https://doi.org/10.1016/0021-9673(95)00875-6
  99. M. A. Mottaleb, M. J. Meziani, and M. R. Islam, "Solidphase microextraction (SPME) and its application to natural products", Encyclopedia of Analytical Chemistry, 105 (2014).
  100. J. S. Aulakh, A. K. Malik, V. Kaur, and P. Schmitt-Kopplin, "A review on solid phase micro extraction-high performance liquid chromatography (SPME-HPLC) analysis of pesticides", Crit. Rev. Anal. Chem., 35, 71 (2005). https://doi.org/10.1080/10408340590947952
  101. Z. Zhang, M. J. Yang, and J. Pawliszyn, "Solid-phase microextraction", Anal. Chem., 66, 884A (1994). https://doi.org/10.1021/ac00090a700
  102. G. Vas and K. Vekey, "Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis", J. Mass Spectrom., 39, 233 (2004). https://doi.org/10.1002/jms.606
  103. H. Al-Khshemawee, X. Du, M. Agarwal, J. O. Yang, and Y. L. Ren, "Application of direct immersion solid-phase microextraction (DI-SPME) for understanding biological changes of Mediterranean fruit fly(ceratitis capitata) during mating procedures", Molecules, 23, 2951 (2018). https://doi.org/10.3390/molecules23112951
  104. H. Lord and J. Pawliszyn, "Evolution of solid-phase microextraction technology", J. Chromatogr. A, 885, 153 (2000). https://doi.org/10.1016/S0021-9673(00)00535-5
  105. K. Curran, M. Underhill, L. T. Gibson, and M. Strlic, "The development of a SPME-GC/MS method for the analysis of VOC emissions from historic plastic and rubber materials", Microchem J., 124, 909 (2016). https://doi.org/10.1016/j.microc.2015.08.027
  106. A. D. Hall and M. Patel, "Thermal stability of foamed polysiloxane rubbers: headspace analysis using solid phase microextraction and analysis of solvent extractable material using conventional GC-MS", Polym. Degrad. Stab., 91, 2532 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.12.017