DOI QR코드

DOI QR Code

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique

2파장 펌프-프로브 기법을 이용한 질화규소 박막의 열물성 평가

  • Kim, Yun Young (School of Mechanical Engineering, Chungnam National University)
  • 김윤영 (충남대학교 기계공학부)
  • Received : 2019.06.24
  • Accepted : 2019.08.22
  • Published : 2019.09.27

Abstract

In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.

Keywords

References

  1. J. E. Kim, K. D. Lee, Y. Kang, H. Lee and D. Kim, Korean J. Mater. Res., 26, 47 (2016). https://doi.org/10.3740/MRSK.2016.26.1.47
  2. B. Kim, J. Yun and J. Kim, Korean J. Mater. Res., 13, 606 (2003). https://doi.org/10.3740/MRSK.2003.13.9.606
  3. S. Shin, H. N. Cho, B. S. Kim and H. H. Cho, Thin Sol. Films, 517, 933 (2008). https://doi.org/10.1016/j.tsf.2008.06.090
  4. Y. Y. Kim and S. Krishnaswamy, J. Korean Soc. Nondestruc. Test., 32, 115 (2012). https://doi.org/10.7779/JKSNT.2012.32.2.115
  5. A. E. Kaloyeros, F. A. Jove, J. Goff and B. Arkles, ECS J. Solid State Sci. Technol., 6, 691 (2017). https://doi.org/10.1149/2.0011710jss
  6. H. Ftouni, C. Blanc, D. Tainoff, A. D. Fefferman, M. Defoort, K. J. Lulla, J. Richard, E. Collin and O. Bourgeois, Phys. Rev. B, 92, 125439 (2015). https://doi.org/10.1103/PhysRevB.92.125439
  7. J. Cho, K. K. Chu, P. C. Chao, C. McGray, M. Asheghi and K. E. Goodson, 2014 IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), p.1186 (2014).
  8. N. Stojanovic, J. Yun, E. B. K. Washington, J. M. Berg, M. W. Holtz and H. Temkin, J. Microelectromech. Syst., 16, 1269 (2007). https://doi.org/10.1109/JMEMS.2007.900877
  9. P. Eriksson, J. Y. Andersson and G. Stemme, J. Microelectromech. Syst., 6, 55 (1997). https://doi.org/10.1109/84.557531
  10. M. V. Arx, O. Paul and H. Baltes, J. Microelectromech. Syst., 9, 136 (2000). https://doi.org/10.1109/84.825788
  11. J. Kuntner, A. Jachimowicz, F. Kohl and B. Jakoby, Proceedings of the Eurosensors '06 Conference, p.17 (2006).
  12. S. M. Lee and D. G. Cahill, J. Appl. Phys., 81, 2590 (1997). https://doi.org/10.1063/1.363923
  13. R. Sultan, A. D. Avery, G. Stiehl and B. L. Zink, J. Appl. Phys., 105, 043501 (2009). https://doi.org/10.1063/1.3078025
  14. J. Hong and S. E. Shim, Appl. Chem. Eng., 21, 115 (2010).
  15. C. Dames, Ann. Rev. Heat Transfer, 16, 7 (2013). https://doi.org/10.1615/AnnualRevHeatTransfer.v16.20