DOI QR코드

DOI QR Code

Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors

융제 및 Ta5+ 치환이 Lu(Nb,Ta)O4:Eu3+ 형광체의 발광 특성에 미치는 영향

  • Kim, Jiwon (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Young Jin (Department of Advanced Materials Engineering, Kyonggi University)
  • 김지원 (경기대학교 신소재공학과) ;
  • 김영진 (경기대학교 신소재공학과)
  • Received : 2019.08.07
  • Accepted : 2019.09.02
  • Published : 2019.09.27

Abstract

$Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.

Keywords

References

  1. M. Nazarov, Y. J. Kim, E. Y. Lee, K. Min, M. S. Jeong, S. W. Lee and D. Y. Noh, J. Appl. Phys., 107, 103104 (2010). https://doi.org/10.1063/1.3392918
  2. H. Guo, X. Chi, Y. Wei, H. M. Noh, B. K. Moon, S. H. Park, J. H. Jeong and K. H. Kim, Sci. Adv. Mater., 9, 349 (2017). https://doi.org/10.1166/sam.2017.2301
  3. Z. Jiang, X. Yu, J. Gou, L. Duan, X. Su, G. Fan and Y. Duan, J. Mater. Sci.: Mater. Electron., 28, 3630 (2017). https://doi.org/10.1007/s10854-016-5966-3
  4. L. Dacanin Far, S. R. Lukic-Petrovic, V. Dordevic, K. Vukovic, E. Glais, B. Viana and M. D. Dramicanin, Sens. Actuators, A, 270, 89 (2018).
  5. E. Y. Lee and Y. J. Kim, Electrochem. Solid-State Lett., 13, J110 (2010). https://doi.org/10.1149/1.3456549
  6. E. Y. Lee, M. Nazarov and Y. J. Kim, J. Electrochem. Soc., 157, J102 (2010). https://doi.org/10.1149/1.3294556
  7. E. Y. Lee and Y. J. Kim, J. Korean Electrochem. Soc., 12, 234 (2009). https://doi.org/10.5229/JKES.2009.12.3.234
  8. M. Nazarov and D. Y. Noh, New Generation of Europium and Terbium Activated Phosphors, p. 168, Pan Stanford Publishing Pte. Ltd., Singapore (2011).
  9. M. H. Im and Y. J. Kim, Mater. Res. Bull., 112, 399 (2019). https://doi.org/10.1016/j.materresbull.2019.01.009
  10. M. H. Im, J. Kim and Y. J. Kim, J. Electroceram., 41, 88 (2018). https://doi.org/10.1007/s10832-018-0167-5
  11. C. Liu, W. Zhou, R. Shi, L. Lin, R. Zhou, J. Chen, Z. Li and H. Liang, J. Mater. Chem. C, 5, 9012 (2017). https://doi.org/10.1039/C7TC03260A
  12. T. Wang, Yi. Hu, L. Chen, X. Wang and M. He, J. Lumin., 181, 189 (2017). https://doi.org/10.1016/j.jlumin.2016.09.020
  13. Y. Wu, H. Suo, X. Zhao, Z. Zhou and C. Guo, Inorg. Chem. Front., 5, 2456 (2018). https://doi.org/10.1039/C8QI00755A
  14. C. Liu, F. Pan, Q. Peng, W. Zhou, R. Shi, L. Zhou, J. Zhang, J. Chen and H. Liang, J. Phys. Chem. C, 120, 26044 (2016). https://doi.org/10.1021/acs.jpcc.6b09806
  15. A. H. Krumpel, P. Boutinaud, E. van der Kolk and P. Dorenbos, J. Lumin., 130, 1357 (2010). https://doi.org/10.1016/j.jlumin.2010.02.035
  16. F. Auzel, Chem. Rev., 104, 139 (2004). https://doi.org/10.1021/cr020357g
  17. X. Wang, X. Li, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Zhang, X. Yang and B. Chen, RSC Adv., 7, 23751 (2017). https://doi.org/10.1039/C7RA02721D
  18. X. Wang, X. Li, H. Zhong, S. Xu, L. Cheng, J. Sun, J. Zhang, L. Li and B. Chen, Sci. Rep., 8, 5736 (2018). https://doi.org/10.1038/s41598-018-23981-4
  19. X. Wang, X. Li, S. Xu, L. Cheng, J. Sun, J. Zhang, L. Li and B. Chen, Mater. Res. Bull., 111, 177 (2019). https://doi.org/10.1016/j.materresbull.2018.11.020
  20. A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash and S. B. Rai, Dalton Trans., 42, 1065 (2013). https://doi.org/10.1039/C2DT32054A
  21. M. H. Im and Y. J. Kim, Korean J. Mater. Res., 28, 355 (2018). https://doi.org/10.3740/MRSK.2018.28.6.355
  22. M. H. Im and Y. J. Kim, Luminescence, 34, 500 (2019). https://doi.org/10.1002/bio.3625
  23. J. Park and Y. J. Kim, Mater. Res. Bull., 96, 270 (2017). https://doi.org/10.1016/j.materresbull.2017.01.027
  24. J. M. Jehng and I. E. Wachs, Chem. Mater., 3, 100 (1991). https://doi.org/10.1021/cm00013a025
  25. O. Yamaguchi, K. Matsui, T. Kawabe and K. Shimizu, J. Am. Ceram. Soc., 68, C275 (1985).
  26. S. M. Thalluri, M. Hussain, G. Saracco, J. Barber and N. Russo, Ind. Eng. Chem. Res., 53, 2640 (2014). https://doi.org/10.1021/ie403999g
  27. V. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade and A. Kassiba, CrystEngComm, 17, 3366 (2015). https://doi.org/10.1039/C5CE00173K
  28. C. Regmi, Y. K. Kshetri, R. P. Pandey, T. Kim, G. Gyawali and S. W. Lee, J. Environ. Sci., 75, 84 (2019). https://doi.org/10.1016/j.jes.2018.03.005
  29. K. P. F. Siqueira, G. B. Carvalho and A. Dias, Dalton Trans., 40, 9454 (2011). https://doi.org/10.1039/c1dt10783f