DOI QR코드

DOI QR Code

Growth of Aluminum Nitride Thin Films by Atomic Layer Deposition and Their Applications: A Review

원자층 증착법을 이용한 AlN 박막의 성장 및 응용 동향

  • Yun, Hee Ju (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 윤희주 (서울과학기술대학교 신소재공학과) ;
  • 김호경 (서울과학기술대학교 안경광학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2019.08.28
  • Accepted : 2019.09.06
  • Published : 2019.09.27

Abstract

Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of $150{\sim}550^{\circ}C$ with alkyl/amine or chloride precursors. Due to the low reactivity with $NH_3$ reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.

Keywords

References

  1. B. J. Choi, J. J. Yang, M. X. Zhang, K. J. Norris, D. A. A. Ohlberg, N. P. Kobayashi, G. Medeiros-Ribeiro and R. S. Williams, Appl. Phys. A: Mater. Sci. Process., 109, 1 (2012). https://doi.org/10.1007/s00339-012-7052-x
  2. K.-E. Elers, M. Ritala, M. Leskela and L.-S. Johansson, Le J. Phys. IV, 05, C5 (1995).
  3. C. Ozgit, I. Donmez, M. Alevli and N. Biyikli, Thin Solid Films, 520, 2750 (2012). https://doi.org/10.1016/j.tsf.2011.11.081
  4. D. Riihela, M. Ritala, R. Matero, M. Leskela, J. Jokinen and P. Haussalo, Chem. Vap. Depos., 2, 277 (1996). https://doi.org/10.1002/cvde.19960020612
  5. S. Shin, G. Ham, H. Jeon, J. Park, W. Jang and H. Jeon, Korean J. Mater. Res., 23, 405 (2013). https://doi.org/10.3740/MRSK.2013.23.8.405
  6. S. M. George, Chem. Rev. (Washington, DC, U. S.), 110, 111 (2010). https://doi.org/10.1021/cr900056b
  7. S. Banerjee, A. A. I. Aarnink, R. van de Kruijs, A. Y. Kovalgin and J. Schmitz, Phys. Status Solidi C, 12, 1036 (2015). https://doi.org/10.1002/pssc.201510039
  8. H. Van Bui, F. B. Wiggers, A. Gupta, M. D. Nguyen, A. A. I. Aarnink, M. P. de Jong and A. Y. Kovalgin, J. Vac. Sci. Technol., A, 33, 01A111 (2015). https://doi.org/10.1116/1.4898434
  9. R. W. Johnson, A. Hultqvist and S. F. Bent, Mater. Today, 17, 236 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
  10. V. Miikkulainen, M. Leskela, M. Ritala and R. L. Puurunen, J. Appl. Phys., 113, (2013).
  11. H. Van Bui, M. D. Nguyen, F. B. Wiggers, A. A. I. Aarnink, M. P. de Jong and A. Y. Kovalgin, ECS J. Solid State Sci. Technol., 3, P101 (2014). https://doi.org/10.1149/2.020404jss
  12. M. Badylevich, S. Shamuilia, V. V. Afanas'Ev, A. Stesmans, Y. G. Fedorenko and C. Zhao, J. Appl. Phys., 104, (2008).
  13. X. Liu, S. Ramanathan, E. Lee and T. E. Seidel, MRS Proc., 811, D1.9 (2004).
  14. J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihela and M. Leskela, Thin Solid Films, 289, 159 (1996). https://doi.org/10.1016/S0040-6090(96)08927-4
  15. K. G. Reid, A. Dip, S. Sasaki, D. Triyoso, S. Samavedam, D. Gilmer and C. F. H. Gondran, Thin Solid Films, 517, 2712 (2009). https://doi.org/10.1016/j.tsf.2008.10.032
  16. G. Liu, E. Deguns, L. Lecordier, G. Sundaram and J. Becker, ECS Trans., 41, 219 (2011).
  17. K. H. Kim, R. G. Gordon, A. Ritenour and D. A. Antoniadis, Appl. Phys. Lett., 90, (2007).
  18. A. I. Abdulagatov, S. M. Ramazanov, R. S. Dallaev, E. K. Murliev, D. K. Palchaev, M. K. Rabadanov and I. M. Abdulagatov, Russ. Microelectron., 47, 118 (2018). https://doi.org/10.1134/S1063739718020026
  19. A. I. Abdulagatov, R. R. Amashaev, K. N. Ashurbekova, K. N. Ashurbekova, M. K. Rabadanov and I. M. Abdulagatov, Russ. J. Gen. Chem., 88, 1699 (2018). https://doi.org/10.1134/S1070363218080236
  20. Z. Chen, Z. Zhu, K. Harkonen and E. Salmi, J. Vac. Sci. Technol., A, 37, 020925 (2019). https://doi.org/10.1116/1.5079509
  21. M. Leskela, M. Mattinen and M. Ritala, J. Vac. Sci. Technol., B, 37, 030801 (2019). https://doi.org/10.1116/1.5083692
  22. S. Huang, Q. Jiang, S. Yang, C. Zhou and K. J. Chen, IEEE Electron Device Lett., 33, 516 (2012). https://doi.org/10.1109/LED.2012.2185921
  23. K.-H. Kim, N.-W. Kwak and S. H. Lee, Electron. Mater. Lett., 5, 83 (2009). https://doi.org/10.3365/eml.2009.06.083
  24. H. Altuntas and T. Bayrak, Electron. Mater. Lett., 13, 114 (2017). https://doi.org/10.1007/s13391-017-6111-z
  25. M. Alevli, C. Ozgit, I. Donmez and N. Biyikli, J. Cryst. Growth, 335, 51 (2011). https://doi.org/10.1016/j.jcrysgro.2011.09.003
  26. M. Alevli, C. Ozgit, I. Donmez and N. Biyikli, Phys. Status Solidi Appl. Mater. Sci., 209, 266 (2012). https://doi.org/10.1002/pssa.201127430
  27. M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V. M. Airaksinen and H. Lipsanen, Appl. Surf. Sci., 257, 7827 (2011). https://doi.org/10.1016/j.apsusc.2011.04.037
  28. P. Mattila, M. Bosund, T. Huhtio, H. Lipsanen and M. Sopanen, J. Appl. Phys., 111, 063511 (2012). https://doi.org/10.1063/1.3694798
  29. C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay and N. Biyikli, J. Mater. Chem. C, 2, 2123 (2014). https://doi.org/10.1039/C3TC32418D
  30. C. Liu, S. Liu, S. Huang and K. J. Chen, IEEE Electron Device Lett., 34, 1106 (2013). https://doi.org/10.1109/LED.2013.2271973
  31. E. Schiliro, F. Giannazzo, C. Bongiorno, S. Di Franco, G. Greco, F. Roccaforte, P. Prystawko, P. Kruszewski, M. Leszczynski, M. Krysko, A. Michon, Y. Cordier, I. Cora, B. Pecz, H. Gargouri and R. Lo Nigro, Mater. Sci. Semicond. Process., 97, 35 (2019). https://doi.org/10.1016/j.mssp.2019.03.005
  32. S. Goerke, M. Ziegler, A. Ihring, J. Dellith, A. Undisz, M. Diegel, S. Anders, U. Huebner, M. Rettenmayr and H. G. Meyer, Appl. Surf. Sci., 338, 35 (2015). https://doi.org/10.1016/j.apsusc.2015.02.119
  33. Y. J. Lee, J. Cryst. Growth, 266, 568 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.016
  34. V. Rontu, P. Sippola, M. Broas, G. Ross, T. Sajavaara, H. Lipsanen, M. Paulasto-Krockel and S. Franssila, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 36, 021508 (2018). https://doi.org/10.1116/1.5003381
  35. Y. J. Lee and S. W. Kang, Thin Solid Films, 446, 227 (2004). https://doi.org/10.1016/j.tsf.2003.10.004
  36. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe and C. Detavernier, J. Electrochem. Soc., 157, G111 (2010). https://doi.org/10.1149/1.3301664
  37. M.-S. Lee, S. Wu, S.-B. Jhong, K.-H. Chen and K.-T. Liu, J. Nanomater., 2014, 1 (2014).
  38. Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena and H. Xing, IEEE Electron Device Lett., 33, 988 (2012). https://doi.org/10.1109/LED.2012.2196751
  39. K. J. Chen and S. Huang, Semicond. Sci. Technol., 28, (2013).
  40. H. Kim, H. J. Yun and B. J. Choi, Optik (Stuttg)., 184, 527 (2019). https://doi.org/10.1016/j.ijleo.2019.05.002
  41. H. Kim, Y. Kwon and B. J. Choi, Thin Solid Films, 670, 41 (2019). https://doi.org/10.1016/j.tsf.2018.12.008
  42. H. Kim, N. Do Kim, S. C. An, H. J. Yoon and B. J. Choi, Vacuum, 159, 379 (2019). https://doi.org/10.1016/j.vacuum.2018.10.067
  43. H. Kim, H. J. Yoon and B. J. Choi, Nanoscale Res. Lett., 13, (2018).
  44. H. Kim, N. Do Kim, S. C. An, H. J. Yoon and B. J. Choi, Trans. Electr. Electron. Mater., 19, 235 (2018). https://doi.org/10.1007/s42341-018-0058-0
  45. H. Kim, N. Do Kim, S. C. An and B. J. Choi, J. Mater. Sci. Mater. Electron., 29, 17508 (2018). https://doi.org/10.1007/s10854-018-9851-0
  46. Y. Baines, J. Buckley, J. Biscarrat, G. Garnier, M. Charles, W. Vandendaele, C. Gillot and M. Plissonnier, Sci. Rep., 7, (2017).
  47. F. Medjdoub, M. Zegaoui, D. Ducatteau, N. Rolland and P. A. Rolland, IEEE Electron Device Lett., 32, 874 (2011). https://doi.org/10.1109/LED.2011.2138674
  48. H. J. Yun and B. J. Choi, Ceram. Int., 45, 16311 (2019). https://doi.org/10.1016/j.ceramint.2019.05.157
  49. B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams and J. J. Yang, Adv. Funct. Mater., 26, 5290 (2016). https://doi.org/10.1002/adfm.201600680
  50. H. D. Kim, H. M. An, Y. Seo and T. G. Kim, IEEE Electron Device Lett., 32, 1125 (2011). https://doi.org/10.1109/LED.2011.2158056
  51. H. D. Kim, H. M. An, E. B. Lee and T. G. Kim, IEEE Trans. Electron Devices, 58, 3566 (2011). https://doi.org/10.1109/TED.2011.2162518
  52. S. Sadeghpour, F. Ceyssens and R. Puers, J. Phys. Conference Ser., 757, (2016).
  53. Y. Kim, M. S. Kim, H. J. Yun, S. Y. Ryu and B. J. Choi, Ceram. Int., 44, 17447 (2018). https://doi.org/10.1016/j.ceramint.2018.06.212