DOI QR코드

DOI QR Code

Temperature-dependent DNA binding of DicA protein in vivo and in vitro

In vivo와 in vitro에서 DicA 단백질의 온도 의존적 DNA 결합

  • Lee, Yonho (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Yun, Sang Hoon (Alteogen) ;
  • Lim, Heon M. (Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University)
  • 이연호 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 윤상훈 ((주)알테오젠) ;
  • 임헌만 (충남대학교 생명시스템과학대학 생물과학과)
  • Received : 2019.02.27
  • Accepted : 2019.06.26
  • Published : 2019.09.30

Abstract

In Escherichia coli, DicA protein is involved in cell division control. DicA protein is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. However, the molecular cause of the temperature dependent binding is not clear. In this study, we investigated how DicA binds DNA and why its DNA binding activity depends on temperature. An unique in vivo DNA binding assay developed in this laboratory showed that unlike the homologous proteins such as RovA or SlyA, DicA uses its N-terminal domain for DNA binding. The in vivo DNA binding assay of DicA also demonstrated that the temperature-dependent DNA binding activity does not come from Cnu or H-NS that is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. Electrophoretic Mobility Shift Assay (EMSA), when performed with purified DicA protein, did not show temperature-dependent DicA binding activity. However when EMSA was performed with crude protein from WT E. coli cells, temperature-dependent DicA binding activity was observed, suggesting that there is a factor(s) that confers temperature DNA binding activity of DicA in vivo.

대장균 세포분열 조절에 관여하는 DicA 단백질은 $37^{\circ}C$보다 $25^{\circ}C$에서 DNA에 더욱 잘 결합한다. 그러나 DicA 단백질의 온도의존적 DNA 결합에 대한 분자적 원인은 명확하지 않다. 본 연구에서는 DicA 단백질이 어떻게 DNA에 결합하며, 왜 온도 의존적 결합양상을 보이는지 알아보았다. In vivo DNA 결합 분석 결과 RovA나 SlyA와 같은 DicA의 상동성 단백질과는 달리 DicA는 N 말단에 있는 DNA 결합 도메인을 이용하여 20개의 염기쌍으로 이루어진 dicC 조절자 유전자(Oc)에 결합함을 보여주었다. 또한 in vivo 실험에서 DicA는 $37^{\circ}C$ 보다 $25^{\circ}C$에서 DNA에 더 잘 결합하는 것으로 알려진 Cnu 또는 H-NS의 영향을 받지 않고 자체적으로 Oc에서의 온도 의존적 DNA 결합을 보인다. 하지만 정제된 DicA 단백질을 이용한 in vitro binding 실험에서는 온도 의존적 DNA 결합이 관찰되지 않았다. Crude 단백질을 이용한 실험에서 DicA 단백질의 온도 의존적 DNA 결합이 관찰되는 것으로 보아 DicA의 온도 의존적 DNA (Oc) 결합은 crude 단백질내에 존재하는 아직 알려지지 않은 in vivo factor에 의해 일어난다.

Keywords

References

  1. Azam TA and Ishihama A. 1999. Twelve species of the nucleoidassociated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105-33113. https://doi.org/10.1074/jbc.274.46.33105
  2. Bejar S and Bouche JP. 1985. A new dispensable genetic locus of the terminus region involved in control of cell division in Escherichia coli. Mol. Gen. Genet. 201, 146-150. https://doi.org/10.1007/BF00425651
  3. Bejar S, Bouche F, and Bouche JP. 1988. Cell division inhibition gene dicB is regulated by a locus similar to lambdoid bacteriophage immunity loci. Mol. Gen. Genet. 212, 11-19. https://doi.org/10.1007/BF00322439
  4. Bejar S, Cam K, and Bouche JP. 1986. Control of cell division in Escherichia coli. DNA sequence of dicA and of a second gene complementing mutation dicA1, dicC. Nucleic Acids Res. 14, 6821-6833. https://doi.org/10.1093/nar/14.17.6821
  5. Bouche F and Bouche JP. 1989. Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB operon, is probably RNA. Mol. Microbiol. 3, 991-994. https://doi.org/10.1111/j.1365-2958.1989.tb00249.x
  6. Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
  7. Datsenko KA and Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  8. de Boer PA, Crossley RE, and Rothfield LI. 1990. Central role for the Escherichia coli minC gene product in two different cell divisioninhibition systems. Proc. Natl. Acad. Sci. USA 87, 1129-1133. https://doi.org/10.1073/pnas.87.3.1129
  9. Dolan KT, Duguid EM, and He C. 2011. Crystal structures of SlyA protein, a master virulence regulator of Salmonella, in free and DNA-bound states. J. Biol. Chem. 286, 22178-22185. https://doi.org/10.1074/jbc.M111.245258
  10. Ke SH and Madison EL. 1997. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 25, 3371-3372. https://doi.org/10.1093/nar/25.16.3371
  11. Kim MS, Bae SH, Yun SH, Lee HJ, Ji SC, Lee JH, Srivastava P, Lee SH, Chae H, Lee Y, et al. 2005. Cnu, a novel oriC-binding protein of Escherichia coli. J. Bacteriol. 187, 6998-7008. https://doi.org/10.1128/JB.187.20.6998-7008.2005
  12. Lee SY, Lee HJ, Lee H, Kim S, Cho EH, and Lim HM. 1998. In vivo assay of protein-protein interactions in Hin-mediated DNA inversion. J. Bacteriol. 180, 5954-5960. https://doi.org/10.1128/JB.180.22.5954-5960.1998
  13. Quade N, Mendonca C, Herbst K, Heroven AK, Ritter C, Heinz DW, and Dersch P. 2012. Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia. J. Biol. Chem. 287, 35796-35803. https://doi.org/10.1074/jbc.M112.379156
  14. Tetart F and Bouche JP. 1992. Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol. Microbiol. 6, 615-620. https://doi.org/10.1111/j.1365-2958.1992.tb01508.x
  15. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, and Wood TK. 2010. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147. https://doi.org/10.1038/ncomms1146
  16. Watkins D, Hsiao C, Woods KK, Koudelka GB, and Williams LD. 2008. P22 c2 repressor-operator complex: mechanisms of direct and indirect readout. Biochemistry 47, 2325-2338. https://doi.org/10.1021/bi701826f
  17. White-Ziegler CA, Angus Hill ML, Braaten BA, van der Woude MW, and Low DA. 1998. Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol. Microbiol. 28, 1121-1137. https://doi.org/10.1046/j.1365-2958.1998.00872.x
  18. Yun SH, Ji SC, Jeon HJ, Wang X, Kim SW, Bak G, Lee Y, and Lim HM. 2012. The CnuK9E H-NS complex antagonizes DNA binding of DicA and leads to temperature-dependent filamentous growth in E. coli. PLoS One 7, e45236. https://doi.org/10.1371/journal.pone.0045236