DOI QR코드

DOI QR Code

활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성

Characterization of Miniimonas sp. S16 isolated from activated sludge

  • 고현우 (비타바이오 생물자원개발연구소) ;
  • 김홍익 (비타바이오 생물자원개발연구소) ;
  • 박수제 (제주대학교 생물학과)
  • 투고 : 2019.07.05
  • 심사 : 2019.08.01
  • 발행 : 2019.09.30

초록

폐수 처리 설비에서 생물학적 요인은 유기물 분해 또는 제거에 필수적인 역할을 수행한다. 본 연구에서는, 폐수처리장의 미생물 기능적 역할을 이해하기 위해, 활성 슬러지 샘플로부터 박테리아 균주를 분리하고 그들의 특성 분석을 시도했다. S16 균주는 대한민국 대전광역시의 폐수처리장의 활성슬러지로 부터 분리되었다. 세포들은 그람음성, 비운동성, 통성 혐기성 그리고 막대모양이였다. S16 균주는 $15{\sim}40^{\circ}C$ (최적 $30^{\circ}C$), 0~9.0% (w/v) NaCl (최적 1.0~2.0%), pH 5.5~9.0 (최적 pH 7.0~7.5)에서 성장하였다. 분자계통학적 분석결과, S16은 Miniimonas 속의 고유종인 Miniimonas areae NBRC $106267^T$ (99.79%, 16S rRNA 유전자 염기서열 유사성)와 가장 밀접한 것으로 나타났다. 해양 미생물로 여겨지는 표준균주 NBRC $106267^T$의 분리 원은 바다 모래이지만 S16 균주는 육상 환경이다. 이는 서식지 전환에 대한 생태학적 의문을 제기할 수 있다. 따라서 비교 유전체 분석은 잠재적인 대사 특성 및 유전체 간소화를 밝히기 위한 가치있는 연구가 될 것이다.

Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

키워드

참고문헌

  1. Bachy C and Worden AZ. 2014. Microbial Ecology: Finding Structure in the Rare Biosphere. Curr. Biol. 24, 315-317. https://doi.org/10.1016/j.cub.2014.03.029
  2. Ezaki T, Hashimoto Y, and Yabuuchi E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotope are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224-229. https://doi.org/10.1099/00207713-39-3-224
  3. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376. https://doi.org/10.1007/BF01734359
  4. Fitch WM. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406-416. https://doi.org/10.1093/sysbio/20.4.406
  5. Gonzalez JM and Saiz-Jimenez C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770-773. https://doi.org/10.1046/j.1462-2920.2002.00362.x
  6. Hu HY, Fujie K, and Urano K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378-382. https://doi.org/10.1016/S1389-1723(99)80049-8
  7. Kimura M. 1989. The neutral theory of molecular evolution and the world view of the neutralists. Genome 31, 24-31. https://doi.org/10.1139/g89-009
  8. Koh HW, Hong H, Min UG, Kang MS, Kim SG, Na JG, Rhee SK, and Park SJ. 2015. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574-4579. https://doi.org/10.1099/ijsem.0.000614
  9. Koh HW, Rani S, Kim SJ, Moon E, Nam SW, Rhee SK, and Park SJ. 2017. Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 67, 4298-4303. https://doi.org/10.1099/ijsem.0.001824
  10. Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  11. Martin C and Vanrolleghem PA. 2014. Analysing, completing, and generating influent data for WWTP modelling: A critical review. Environ. Model Softw. 60, 188-201. https://doi.org/10.1016/j.envsoft.2014.05.008
  12. Menendez E, Flores-Felix JD, Mulas R, Andres FG, Fernandez-Pascual M, Peix A, and Velazquez E. 2017. Paenibacillus tritici sp. nov., isolated from wheat roots. Int. J. Syst. Evol. Microbiol. 67, 2312-2316. https://doi.org/10.1099/ijsem.0.001949
  13. Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  14. Schleifer KH and Kandler O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407-477. https://doi.org/10.1128/MMBR.36.4.407-477.1972
  15. Stolp H. 1988. Microbial Ecology: Organisms, Habitats, Activities. Cambridge: Cambridge University Press, England.
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  17. Ue H, Matsuo Y, Kasai H, and Yokota A. 2011. Miniimonas arenae gen. nov., sp. nov., an actinobacterium isolated from sea sand. Int. J. Syst. Evol. Microbiol. 61, 123-127. https://doi.org/10.1099/ijs.0.019596-0
  18. Webley DM. 1953. A simple method for producing microcultures in hanging drops with special reference to organisms utilizing oils. J. Gen. Microbiol. 8, 66-71. https://doi.org/10.1099/00221287-8-1-66
  19. Weisburg WG, Barns SM, Pelletier DA, and Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  20. Yashroy RC. 1990. Lamellar dispersion and phase separation of chloroplast membrane lipids by negative staining electron microscopy. J. Biosci. 15, 93-98. https://doi.org/10.1007/BF02703373
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  22. Zhang H, Yoshizawa S, Sun Y, Huang Y, Chu X, Gonzalez JM, Pinhassi J, and Luo H. 2019. Repeated evolutionary transitions of flavobacteria from marine to non-marine habitats. Environ. Microbiol. 21, 648-666. https://doi.org/10.1111/1462-2920.14509