A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS WITH A CONVECTION TERM

Mi Ray Ohm and Jun Yong Shin

Abstract. In this paper, we consider a split least-squares characteristic mixed element method for Sobolev equations with a convection term. First, to manipulate both convection term and time derivative term efficiently, we apply a characteristic mixed element method to get the system of equations in the primal unknown and the flux unknown and then get a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We prove the optimal order in L^2 and H^1 normed spaces for the primal unknown and the suboptimal order in L^2 normed space for the flux unknown.

1. Introduction

In this paper, we will consider a Sobolev equation with a convection term:

\[
\begin{cases}
 c(x)u_t + d(x) \cdot \nabla u - \nabla \cdot (a(u)u_t + b(u)\nabla u) = f(u), & (x, t) \in \Omega \times (0, T], \\
 u(x, t) = 0, & (x, t) \in \Gamma_D \times (0, T], \\
 (a(u)u_t + b(u)\nabla u) \cdot n = 0, & (x, t) \in \Gamma_N \times (0, T], \\
 u(x, 0) = u_0(x), & x \in \Omega,
\end{cases}
\]

where Ω is a bounded convex domain in \mathbb{R}^m with $1 \leq m \leq 3$ with its boundary $\partial\Omega = \Gamma_D \cup \Gamma_N$, $\Gamma_D \cap \Gamma_N = \emptyset$, $c(x)$, $d(x)$, $a(u)$, $b(u)$, $f(u)$, and $u_0(x)$ are given functions. We refer to [2, 21, 22] for the applications of the Sobolev equation and to [8] for the existence and uniqueness results of the solutions of (1.1).
When $d(x) = 0$, many numerical methods, such as mixed finite element methods [11, 18, 20, 24], least-squares methods [12, 20, 23, 24], and discontinuous Galerkin methods [14, 15] were employed to treat the problem numerically. If we apply a conventional (least-squares) mixed finite element method, then we have the coupled system of equations in two unknowns and some difficulties in solving the coupled system. So, in [20], a split least-squares mixed finite element method for reaction-diffusion problems is firstly introduced to solve the uncoupled systems of equations in the unknowns.

When $d(x) \neq 0$, we generally use a characteristic (mixed) finite element method as one of the useful methods [1, 3, 4, 5, 6, 7, 10, 13] to reflect well the physical character of a convection term and to treat efficiently both convection term and time derivative term. Gao and Rui [9] introduced a split least-squares characteristic mixed finite element method to approximate the primal unknown u and the flux unknown $-a\nabla u$ of the equation (1.1) and obtained the optimal convergence in $L^2(\Omega)$ norm for the primal unknown and in $H(div, \Omega)$ norm for the flux unknown. And Zhang and Guo [25] introduced a split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem to approximate the primal unknown and the flux unknown and obtained the optimal convergence in $L^2(\Omega)$ norm for the primal unknown and in $H(div, \Omega)$ norm for the flux unknown. In [16], Ohm and Shin introduced a split least-squares characteristic mixed element method to obtain the uncoupled system of two equations. One is for the approximation of the primal unknown u and the other is for the approximation of the flux unknown $\sigma = -(a(x)\nabla u + b(x)\nabla u)$. And they proved the optimal order of convergence in L^2 and H^1 normed spaces for the approximations.

In this paper, we introduce a split least-squares characteristic mixed element method to obtain two uncoupled system of equations. One is for the approximation of the primal unknown u and the other is for the approximation of the flux unknown $\sigma = -(a(u)\nabla u_t + b(u)\nabla u)$. And we analyze the optimal order of convergence in L^2 and H^1 normed spaces for the approximations of the primal unknown u and the suboptimal order in L^2 normed space for the approximations of the flux unknown σ. The remainder of this paper is organized as follows. In section 2, we introduce some assumptions and notations and in section 3, we construct finite element spaces with approximation properties. In section 4, we use a split least-squares characteristic mixed element method to construct the approximations of the primal unknown and the unknown flux and obtain the convergence of optimal order in L^2 and H^1 normed spaces for the primal unknown and the convergence of suboptimal order in L^2 normed space for the flux unknown.
2. Assumption and notations

For a nonnegative integer \(s \) and \(1 \leq p \leq \infty \), we denote by \(W^{s,p}(\Omega) \) the Sobolev space with the norm

\[
\|\phi\|_{s,p} = \left\{ \begin{array}{ll}
\left(\sum_{|k| \leq s} \int_{\Omega} |D^k\phi|^p dx \right)^{1/p}, & 1 \leq p < \infty, \\
\max_{|k| \leq s} \text{esssup}|D^k\phi|, & p = \infty,
\end{array} \right.
\]

where \(k = (k_1, k_2, \cdots, k_m), k_i \geq 0 \), is a multiindex of order \(|k| = k_1 + k_2 + \cdots + k_m \) and \(D^k\phi = \frac{\partial^{k_1} \phi}{\partial x_1^{k_1}} \frac{\partial^{k_2} \phi}{\partial x_2^{k_2}} \cdots \frac{\partial^{k_m} \phi}{\partial x_m^{k_m}} \). If \(p = 2 \), we usually write \(H^s(\Omega) = W^{s,2}(\Omega) \) and \(\|\phi\|_s = \|\phi\|_{s,2} \). And if \(s = 0 \), we simply write \(\|\phi\| = \|\phi\|_0 \). Let \(H^s(\Omega) = \{ u = (u_1, u_2, \cdots, u_m) \mid u_i \in H^s(\Omega), 1 \leq i \leq m \} \) with the norm \(\|u\|_s = \left(\sum_{i=1}^m \|u_i\|_s^2 \right)^{1/2} \). And let \(V = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \} \) and \(W = \{ w \in H(div, \Omega) : w \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \} \).

If \(\phi(x, t) \) belongs to a Sobolev space equipped with a norm \(\| \cdot \|_X \) for each \(t \), then we let

\[
\|\phi(x, t)\|_{L^p(0, t_0; X)}^p = \int_0^{t_0} \|\phi(x, t)\|_X^p dt, \text{ for } 1 \leq p < \infty,
\]

\[
\|\phi(x, t)\|_{L^\infty(0, t_0; X)} = \sup_{0 \leq t \leq t_0} \|\phi(x, t)\|_X.
\]

In case that \(t_0 = T \), we simply write \(L^p(X) = L^p(0, T : X) \) and \(L^\infty(X) = L^\infty(0, T : X) \), respectively.

We consider the problem (1.1) with the coefficients satisfying the following assumptions:

(A1) There exist \(c_*, c^* \), and \(d^* \) such that \(0 < c_* < c(x) \leq c^* \) and \(0 < |d(x)| \leq d^* \) for all \(x \in \Omega \), where \(|d(x)| = \sum_{i=1}^m d_i^2(x) \).

(A2) There exist \(a_*, a^*, b_* \), and \(b^* \) such that \(0 < a_* < a(p) \leq a^* \) and \(0 < b_* < b(p) \leq b^* \) for all \(p \in \mathbb{R} \).

(A3) \(a_p(p), a_{pp}(p), b_p(p), \) and \(b_{pp}(p) \) are bounded.

(A4) \(f(p) \) is Lipschitz continuous.

3. Finite element spaces

Before preceding our numerical scheme, we let \(E_h = \{ E_1, E_2, \cdots, E_{N_h} \} \) be a family of regular finite element subdivision of \(\Omega \). We let \(h \) denote the maximum of the diameters of the elements of \(E_h \). If \(m = 2 \), then \(E_i \) is a triangle or a quadrilateral, and if \(m = 3 \), then \(E_i \) is a 3-simplex or 3-rectangle. Boundary elements are allowed to have one curvilinear edge (or one curved surface).

We denote by \(V_h \times W_h \) the Raviart-Thomas-Nedlec space of index \(k \geq 0 \).
associated with \mathcal{E}_h. And let $P_h \times \Pi_h : V \times W \rightarrow V_h \times W_h$ denote the Raviart-Thomas projection [19] which satisfies

$$\begin{cases}
(\nabla \cdot w - \nabla \cdot \Pi_h w, \chi) = 0, & \forall \chi \in V_h, \\
(v - P_h v, \chi) = 0, & \forall \chi \in V_h.
\end{cases} \tag{3.1}$$

Then, $(\nabla \cdot w, v - P_h v) = 0$ holds for each $v \in V$ and each $w \in W_h$ and $\text{div} \, \Pi_h = P_h \text{div}$ is a function from W onto V_h. The following approximation properties are proved in [19]:

$$\begin{align*}
\|v - P_h v\| + h \|v - P_h v\|_r & \leq K h^r \|v\|_r, \forall v \in V \cap H^r(\Omega), 1 \leq r \leq k + 1, \\
\|w - \Pi_h w\| & \leq K h^r \|w\|_r, \forall w \in W \cap H^r(\Omega), 1 \leq r \leq k + 1, \tag{3.2} \\
\|\nabla \cdot (w - \Pi_h w)\| & \leq K h^r \|\nabla \cdot w\|_r, \forall w \in W \cap H^r(\Omega), 0 \leq r \leq k + 1.
\end{align*}$$

4. Error analysis

Let $\nu = \nu(x, t)$ be the unit vector in the direction of $(d(x), c(x))$. Then, the directional derivative of u in the direction of ν is given as follows:

$$\frac{\partial u}{\partial \nu} = \frac{c(x)}{\psi(x)} \frac{\partial u}{\partial t} + \frac{d(x)}{\psi(x)} \cdot \nabla u$$

where $\psi(x) = \left(c^2(x) + |d(x)|^2 \right)^{\frac{1}{2}}$ and $|d(x)|^2 = \sum_{i=1}^{m} d_i^2(x)$. So the problem (1.1) becomes

$$\begin{align*}
\frac{\psi(x) \partial u}{\partial \nu} - \nabla \cdot (a(u) \nabla u_t + b(u) \nabla u) &= f(u), & \text{in } \Omega \times (0, T], \\
u(x, t) &= 0, & \text{on } \Gamma_D \times (0, T], \\
(a(u) \nabla u_t + b(u) \nabla u) \cdot n &= 0, & \text{on } \Gamma_N \times (0, T], \\
u(x, 0) &= u_0(x), & \text{in } \Omega.
\end{align*} \tag{4.1}$$

By denoting $\sigma = -(a(u) \nabla u_t + b(u) \nabla u)$, we can rewrite the problem (4.1) as

$$\begin{align*}
\psi(x) \frac{\partial u}{\partial \nu} + \nabla \cdot \sigma &= f(u), & \text{in } \Omega \times (0, T], \\
\sigma + a(u) \nabla u_t + b(u) \nabla u &= 0, & \text{in } \Omega \times (0, T], \\
u(x, t) &= 0, & \text{on } \Gamma_D \times (0, T], \\
\sigma \cdot n &= 0, & \text{on } \Gamma_N \times (0, T], \\
u(x, 0) &= u_0(x), & \text{in } \Omega.
\end{align*} \tag{4.2}$$

To discretize the problem (4.2), let $\Delta t = T/N$ be a time increment and $t^n = n \Delta t$ for a positive integer N and $n = 0, 1, \cdots, N$. Discretizing $\psi(x) \frac{\partial u}{\partial \nu}$ at (x, t^n) by applying the backward Euler method along the direction of ν, we get

$$\psi(x) \frac{\partial u}{\partial \nu}(x, t^n) \approx \psi(x) \frac{u(x, t^n) - u(x, t^{n-1})}{\sqrt{\frac{|d(x)|^2 \Delta t}{c(x)^2} + (\Delta t)^2}} = c(x) \frac{u(x, t^n) - u(x, t^{n-1})}{\Delta t},$$
where \(\hat{x} = x - \hat{d}(x)\Delta t \) with \(\hat{d}(x) = \frac{d(x)}{c(x)} \). Therefore, from (4.2), we know that for \(n \geq 1 \), \((u^n, \sigma^n)\) satisfies

\[
\begin{aligned}
\begin{cases}
(c(x)\frac{u^n - u^{n-1}}{\Delta t} + \nabla \cdot \sigma^n = f(u^{n-1}) + E_1^n + E_2^n, & \text{in } \Omega, \\
\sigma^n + a(u^{n-1})\nabla u^n + b(u^{n-1})\nabla u^n = E_3^n + E_4^n, & \text{in } \Omega, \\
u^n = 0, & \text{on } \Gamma_D, \\
\sigma^n \cdot n = 0, & \text{on } \Gamma_N, \\
u_0 = u_0(x), & \text{in } \Omega,
\end{cases}
\end{aligned}
\]

(4.3)

where \(u^n = u(x, t^n), \ \hat{u}^{n-1} = \hat{u}(x, t^{n-1}), \ E_1^n = c(x)\frac{u^n - \hat{u}^{n-1}}{\Delta t} - \psi(x)\frac{\partial u}{\partial t}(x, t^n), \ E_2^n = f(u^n) - f(u^{n-1}), \ E_3^n = a(u^{n-1})\nabla u^n - a(u^n)\nabla u^n, \ \text{and } E_4^n = b(u^{n-1})\nabla u^n - b(u^n)\nabla u^n. \) So, for first and second equations of (4.3), we obtain the equivalent system of equations

\[
\begin{aligned}
\begin{cases}
(c(x)u^n + \Delta t \nabla \cdot \sigma^n = c(x)\hat{u}^{n-1} + \Delta t(f(u^{n-1}) + E_1^n + E_2^n), \\
\sigma^n \Delta t + a(u^{n-1})\nabla u^n + b(u^{n-1})\nabla u^n\Delta t = a(u^{n-1})\nabla u^{n-1} + \Delta t(E_3^n + E_4^n),
\end{cases}
\end{aligned}
\]

(4.4)

and hence

\[
\begin{aligned}
\begin{cases}
(c(x)u^n + \Delta t \nabla \cdot \sigma^n = c(x)\hat{u}^{n-1} + \Delta t(f(u^{n-1}) + E_1^n + E_2^n), \\
\sigma^n \Delta t + A(u^{n-1})\nabla u^n = a(u^{n-1})\nabla u^{n-1} + \Delta t(E_3^n + E_4^n),
\end{cases}
\end{aligned}
\]

(4.5)

where \(A(\cdot) = a(\cdot) + b(\cdot)\Delta t. \) Therefore, from (4.4), we get

\[
\begin{aligned}
\begin{cases}
(c(x))^{-1/2}[c(x)u^n + \Delta t \nabla \cdot \sigma^n \\
-(c(x)\hat{u}^{n-1} + \Delta t(f(u^{n-1}) + E_1^n + E_2^n))] = 0, \\
A(u^{n-1})^{-1/2}[\sigma^n \Delta t + A(u^{n-1})\nabla u^n \\
-(a(u^{n-1})\nabla u^{n-1} + \Delta t(E_3^n + E_4^n))] = 0.
\end{cases}
\end{aligned}
\]

(4.5)

For \((v, \tau) \in V \times W\), we define a least-squares functional \(J(v, \tau) \) as follows

\[
J(v, \tau) = \inf_{(u^n, \sigma^n) \in V \times W} J(v, \tau).
\]

(4.6)

Define the bilinear form \(B \) on \((V \times W)^2\) by

\[
B(w : u, \sigma; v, \tau) = \left(c(x)^{-1}(c(x)u + \Delta t \nabla \sigma), c(x)v + \Delta t \nabla \tau \right) \\
+ \left(A(w)^{-1}(A(w)\nabla u + \Delta t \sigma), A(w)\nabla v + \Delta t \tau \right).
\]

(4.7)
Then the weak formulation of the minimization problem (4.6) is given as follows: find \((u^n, \sigma^n) \in V \times W\) such that
\[
B(u^{n-1} : u^n, \sigma^n; v, \tau) =
\left(c(x)^{-1}c(x)\hat{u}^{n-1} + \Delta t(f(u^{n-1}) + E_1^n + E_2^n), c(x)v + \Delta t \nabla \cdot \tau \right)
+ \left(A(u^{n-1})^{-1}a(u^{n-1})\nabla u^{n-1} + \Delta t(E_3^n + E_4^n), A(u^{n-1})\nabla v + \Delta t \tau \right),
\]
(4.8)
for any \((v, \tau) \in V \times W\). Based on (4.8), we derive the following least-squares characteristic MEM scheme: find approximation \((u^n_h, \sigma^n_h) \in V_h \times W_h\) satisfying
\[
B(u^n_h : u^n_h, \sigma^n_h; v_h, \tau_h) =
\left(c(x)^{-1}c(x)\hat{u}^{n-1}_h + \Delta t f(u^{n-1}_h), c(x)v_h + \Delta t \nabla \cdot \tau_h \right)
+ \left(A(u^n_h)^{-1}a(u^{n-1}_h)\nabla u^{n-1}_h, A(u^{n-1}_h)\nabla v_h + \Delta t \tau_h \right),
\]
(4.9)
for any \((v_h, \tau_h) \in V_h \times W_h\).

Lemma 4.1. For any \((u, \sigma), (v, \tau) \in V \times W\), we have
\[
B(w : u, \sigma; v, \tau) = (c(x)u, v) + (\Delta t)^2 (c(x)^{-1}\nabla \cdot \sigma, \nabla \cdot \tau)
+ (A(w)\nabla u, \nabla v) + (\Delta t)^2 (A(w)^{-1}\sigma, \tau).
\]

Proof. From the definition of the bilinear form \(B\) in (4.7), we have
\[
B(w : u, \sigma; v, \tau)
=(c(x)u, v) + \Delta t (\nabla \cdot \sigma, v) + \Delta t (u, \nabla \cdot \tau) + (\Delta t)^2 (c(x)^{-1}\nabla \cdot \sigma, \nabla \cdot \tau)
+ (A(w)\nabla u, \nabla v) + \Delta t (\nabla u, \tau) + \Delta t (\sigma, \nabla v) + (\Delta t)^2 (A(w)^{-1}\sigma, \tau)
=(c(x)u, v) + (\Delta t)^2 (c(x)^{-1}\nabla \cdot \sigma, \nabla \cdot \tau)
+ (A(w)\nabla u, \nabla v) + (\Delta t)^2 (A(w)^{-1}\sigma, \tau).
\]

\(\square\)

Letting \(v_h = 0\) in (4.9) and applying the definition of the bilinear form \(B\), we have
\[
(\Delta t)^2 \left((c(x)^{-1}\nabla \cdot \sigma^n_h, \nabla \cdot \tau_h) + (A(u^{n-1}_h)^{-1}\sigma^n_h, \tau^n_h) \right)
= \Delta t (\hat{u}^{n-1}_h, \nabla \cdot \tau_h) + (\Delta t)^2 (c(x)^{-1}f(u^{n-1}_h), \nabla \cdot \tau_h)
+ \Delta t (A(u^{n-1}_h)^{-1}a(u^{n-1}_h)\nabla u^{n-1}_h, \tau_h),
\]
Since we have and so
\[\frac{1}{\Delta t} (\tilde{u}^{n-1}_h, \nabla \cdot \tau_h) + (c(x)^{-1}f(u_h^{n-1}), \nabla \cdot \tau_h) \]
\[+ \frac{1}{\Delta t} (A(u_h^{n-1})^{-1}a(u_h^{n-1})\nabla u_h^{n-1}, \tau_h). \]
Since
\[1 - A(u_h^{n-1})^{-1}a(u_h^{n-1}) = A(u_h^{n-1})^{-1}(A(u_h^{n-1}) - a(u_h^{n-1})) = \Delta t A(u_h^{n-1})^{-1}b(u_h^{n-1}), \]
we have
\[(c(x)^{-1}\nabla \cdot \sigma^n_h, \nabla \cdot \tau_h) + (A(u_h^{n-1})^{-1}\sigma^n_h, \tau^n_h) \]
\[= \frac{1}{\Delta t} (\tilde{u}^{n-1}_h, \nabla \cdot \tau_h) + (c(x)^{-1}f(u_h^{n-1}), \nabla \cdot \tau_h) + \frac{1}{\Delta t} (\nabla u_h^{n-1}, \tau_h) \]
\[- (A(u_h^{n-1})^{-1}b(u_h^{n-1})\nabla u_h^{n-1}, \tau_h) \]
\[= \frac{1}{\Delta t} (\nabla (u_h^{n-1} - \tilde{u}^{n-1}_h), \tau_h) + (c(x)^{-1}f(u_h^{n-1}), \nabla \cdot \tau_h) \]
\[- (A(u_h^{n-1})^{-1}b(u_h^{n-1})\nabla u_h^{n-1}, \tau_h). \]
Letting \(\tau_h = 0 \) in (4.9) and applying the definition of the bilinear form \(B \), we have
\[(c(x)u_h^n, v_h) + (A(u_h^{n-1})\nabla u_h^n, \nabla v_h) = (c(x)\tilde{u}^{n-1}_h, v_h) + \Delta t (f(u_h^{n-1}), v_h) \]
\[+ (a(u_h^{n-1})\nabla u_h^{n-1}, \nabla v_h). \]
Therefore, we finally derive a split least-squares characteristic MEM: find approximations \(\{u_h^n, \sigma_h^n\} \in V_h \times W_h \) satisfying:
\[(c(x)u_h^n, v_h) + (A(u_h^{n-1})\nabla u_h^n, \nabla v_h) = (c(x)\tilde{u}^{n-1}_h, v_h) + \Delta t (f(u_h^{n-1}), v_h) + (a(u_h^{n-1})\nabla u_h^{n-1}, \nabla v_h) \]
\[(c(x)^{-1}\nabla \cdot \sigma^n_h, \nabla \cdot \tau_h) + (A(u_h^{n-1})^{-1}\sigma^n_h, \tau^n_h) \]
\[= \frac{1}{\Delta t} (\nabla (u_h^{n-1} - \tilde{u}^{n-1}_h), \tau_h) + (c(x)^{-1}f(u_h^n), \nabla \cdot \tau_h) \]
\[- (A(u_h^{n-1})^{-1}b(u_h^{n-1})\nabla u_h^{n-1}, \tau_h). \]
For the sake of the error analysis, we define a projection \(\tilde{u}(x, t) \) of \(u(x, t) \) onto \(V_h \) satisfying
\[
\begin{cases}
(a(u)\nabla (u - \tilde{u}), \nabla v_h) + (b(u)\nabla (u - \tilde{u}), \nabla v_h) = 0, & \forall v_h \in V_h \\
(\tilde{u}(0), v) = (u_0, v), & \forall v_h \in V_h.
\end{cases}
\]
(4.12)
Obviously, by the assumption (A2), there exists unique projection \(\tilde{u}(x, t) \in V_h \).
Let \(\eta = u - \tilde{u} \) and \(\xi = u_h - \tilde{u} \) and state the estimates of \(\eta \) below. Hereafter a constant \(K \) denotes a generic positive constant depending on \(\Omega \) and \(u \), but
independent of h and Δt, and also any two Ks in different places don’t need to be the same.

Lemma 4.2. Let $u_0 \in H^s(\Omega)$, $u_t, u_{tt} \in H^s(\Omega)$, $u_t \in L^2(H^s(\Omega))$, and $s \geq 2$. If $\nabla u, u_t \in L^\infty(\Omega \times [0,T])$, then there exists a constant K, independent of h, such that

\[
\begin{align*}
(\mathbf{i}) \quad \|\eta\| + h\|\eta_t\|_1 & \leq Kh^\mu(\|u_t\|_{L^2(H^s(\Omega))} + \|u_0\|_s), \\
(\mathbf{ii}) \quad \|\eta_t\| + h\|\eta_t\|_1 & \leq Kh^\mu(\|u_t\|_{L^2(H^s(\Omega))} + \|u_0\|_s + \|u_t\|_s), \\
(\mathbf{iii}) \quad \|\eta_{tt}\|_1 & \leq Kh^{\mu-1}(\|u_t\|_{L^2(H^s(\Omega))} + \|u_0\|_s + \|u_t\|_s + \|u_{tt}\|_s),
\end{align*}
\]

where $\mu = \min(r + 1, s)$.

Proof. The proof of Lemma 4.2 is similar to one of the results in [14, 15] \(\square\)

Lemma 4.3. Let $u_0 \in H^s(\Omega)$ and $u, u_t, u_{tt} \in L^\infty(H^s(\Omega)) \cap L^\infty(W^{1,\infty}(\Omega))$. If $\mu = \min(r + 1, s) \geq 1 + \frac{m}{2}$, then the following statements hold:

\[
\max\{\|\eta\|_\infty, \|\nabla\eta\|_\infty, \|\nabla\partial_t\eta\|_\infty, \|\nabla\eta_t\|_\infty, \|\nabla\eta_{tt}\|_\infty\} \leq \tilde{K}.
\]

Proof. The proof of Lemma 4.3 is similar to one of the results in [17] \(\square\)

Lemma 4.4. If $u, u_t, u_{tt} \in L^\infty(H^s(\Omega)) \cap L^\infty(W^{1,\infty}(\Omega))$, then

\[
\|E^1_n\| \leq K\Delta t, \|E^2_n\| \leq K\Delta t, \|E^3_n\| \leq K\Delta t, \text{ and } \|E^4_n\| \leq K\Delta t.
\]

Proof. By applying Taylor’s expansion, we obviously have the estimations for $E^1_n \sim E^4_n$. \(\square\)

Theorem 4.1. Assume that the hypotheses of Lemma 4.2 and Lemma 4.3 hold. If $\Delta t = O(h)$, then

\[
\|u^n - u^n_h\|_1 \leq K(h^{\mu-1} + \Delta t), \quad l = 0, 1,
\]

where $\mu = \min(k + 1, s)$.

Proof. From (4.4), we get

\[
\begin{align*}
(c(x)u^n, v) + (A(u^{n-1})\nabla u^n, \nabla v) \\
= (c(x)\hat{u}^{n-1}, v) + \Delta t(f(u^{n-1}), v) + \Delta t(E^n_1, v) + \Delta t(E^n_2, v) \\
&+ (a(u^{n-1})\nabla u^{n-1}, \nabla v) + \Delta t(E^n_3, \nabla v) + \Delta t(E^n_4, \nabla v).
\end{align*}
\]

\text{(4.13)}

for any $(v, \tau) \in V \times W$. So, from (4.10) and (4.13), we get

\[
\begin{align*}
(c(x)u^n - c(x)u^n_h, v_h) + (A(u^{n-1})\nabla u^n - A(u^{n-1}_h)\nabla u^n_h, \nabla v_h) \\
= (c(x)\hat{u}^{n-1} - c(x)\hat{u}^{n-1}_h, v_h) + \Delta t(f(u^{n-1}) - f(u^{n-1}_h), v_h) + \Delta t(E^n_1, v_h) \\
&+ \Delta t(E^n_2, v_h) + (a(u^{n-1})\nabla u^{n-1} - a(u^{n-1}_h)\nabla u^{n-1}_h, \nabla v_h) \\
&+ \Delta t(E^n_3, \nabla v_h) + \Delta t(E^n_4, \nabla v_h).
\end{align*}
\]
and hence

\[(c(x)(\eta^n - \xi^n), v_h) + (A(u_h^{n-1})(\nabla \eta^n - \nabla \xi^n), \nabla v_h)\]

\[+ \left((A(u_h^{n-1}) - A(u_h^{n-1}))\nabla u^n, \nabla v_h\right)\]

\[= (c(x)\tilde{c}^{n-1}, v_h) + \Delta t(f(u^{n-1}) - f(u_h^{n-1}), v_h) + \Delta t(E_1^n, v_h)\]

\[+ \Delta t(E_2^n, v_h) + (a(u_h^{n-1})\nabla (\eta^{n-1} - \xi^{n-1}), \nabla v_h)\]

\[+ \left((a(u^n) - a(u_h^{n-1}))\nabla u^{n-1}, \nabla v_h\right) + \Delta t(E_3^n, \nabla v_h) + \Delta t(E_4^n, \nabla v_h).\]

Therefore we have

\[(c(x)\xi^n, v_h) + (A(u_h^{n-1})\nabla \xi^n, \nabla v_h) - (a(u_h^{n-1})\nabla \xi^{n-1}, \nabla v_h)\]

\[= (c(x)\eta^n, v_h) + (A(u_h^{n-1})\nabla \eta^n, \nabla v_h) + ((A(u_h^{n-1}) - A(u_h^{n-1}))\nabla u^n, \nabla v_h)\]

\[\quad - (c(x)(\tilde{c}^{n-1} - \xi^{n-1}), v_h) - \Delta t(f(u^{n-1}) - f(u_h^{n-1}), v_h) - \Delta t(E_1^n, v_h)\]

\[\quad - \Delta t(E_2^n, v_h) - (a(u_h^{n-1})\nabla (\eta^{n-1}, \nabla v_h)\]

\[\quad - ((a(u^n) - a(u_h^{n-1}))\nabla u^{n-1}, \nabla v_h) - \Delta t(E_3^n, \nabla v_h) - \Delta t(E_4^n, \nabla v_h).\]

Since

\[A(u_h^{n-1})\nabla \xi^n - a(u_h^{n-1})\nabla \xi^{n-1} = a(u_h^{n-1})(\nabla \xi^n - \nabla \xi^{n-1}) + \Delta t b(u_h^{n-1})\nabla \xi^n,\]

we have

\[(c(x)(\xi^n - \xi^{n-1}, v_h) + (a(u_h^{n-1})(\nabla \xi^n - \nabla \xi^{n-1}), \nabla v_h)\]

\[+ \Delta t(b(u_h^{n-1})\nabla \xi^n, \nabla v_h)\]

\[= (c(x)(\eta^n - \tilde{c}^{n-1}), v_h) + (c(x)(\tilde{c}^{n-1} - \xi^{n-1}), v_h)\]

\[+ ((A(u_h^{n-1}) - A(u_h^{n-1}))\nabla u^n, \nabla v_h) - ((a(u^n) - a(u_h^{n-1}))\nabla u^{n-1}, \nabla v_h)\]

\[\quad - \Delta t(f(u^{n-1}) - f(u_h^{n-1}), v_h) - \Delta t(E_1^n + E_2^n, v_h) - \Delta t(E_3^n + E_4^n, \nabla v_h)\]

\[+ (A(u_h^{n-1})\nabla \eta^n, \nabla v_h) - (a(u_h^{n-1})\nabla \eta^{n-1}, \nabla v_h).\]

And since

\[((A(u^{n-1}) - A(u_h^{n-1}))\nabla u^n, \nabla v_h) - ((a(u^n) - a(u_h^{n-1}))\nabla u^{n-1}, \nabla v_h)\]

\[= ((a(u^n) - a(u_h^{n-1}))(\nabla u^n - \nabla u^{n-1}, \nabla v_h)\]

\[+ \Delta t((b(u^{n-1}) - b(u_h^{n-1}))\nabla u^n, \nabla v_h)\]

and

\[A(u_h^{n-1})\nabla \eta^n - a(u_h^{n-1})\nabla \eta^{n-1}\]

\[= (a(u_h^{n-1}) - a(u_h^{n-1}))(\nabla \eta^n - \nabla \eta^{n-1}) + a(u^n)(\nabla \eta^n - \nabla \eta^{n-1} - \Delta t \nabla \eta^n)\]

\[+ \Delta t(a(u^n) - a(u_h^{n-1}))\nabla \eta^n + \Delta t(b(u_h^{n-1}) - b(u^n))\nabla \eta^n\]

\[+ \Delta t(b(u^{n-1}) - b(u_h^{n-1}))\nabla \eta^n + \Delta t(a(u^n)\nabla \eta^n + b(u^n)\nabla \eta^n),\]
we have

\[
(c(x)(\xi^n - \xi^{n-1}), v_h) + (a(u_h^{n-1})(\nabla \xi^n - \nabla \xi^{n-1}), \nabla v_h)
\]
\[
+ \Delta t (b(u_h^{n-1})\nabla \xi^n, \nabla v_h)
\]
\[= (c(x)(\eta^n - \hat{\eta}^{n-1}), v_h) + (c(x)(\hat{\xi}^{n-1} - \xi^{n-1}), v_h)
\]
\[
+ ((a(u^n-1) - a(u_h^{n-1}))(\nabla u^n - \nabla u^{n-1}), \nabla v_h)
\]
\[
+ \Delta t ((b(u^n-1) - b(u_h^{n-1}))\nabla u^n, \nabla v_h) - \Delta t (f(u^n-1) - f(u_h^{n-1}), v_h)
\]
\[
- \Delta t (E_1^n + E_2^n, v_h) - \Delta t (E_3^n + E_4^n, \nabla v_h)
\]
\[
+ ((a(u_h^{n-1}) - a(u^n-1))(\nabla \eta^n - \nabla \eta^{n-1}), \nabla v_h)
\]
\[
+ (a(u^n-1))(\nabla \eta^n - \nabla \eta^{n-1} - \Delta t \nabla \eta_t^n), \nabla v_h)
\]
\[
+ \Delta t((a(u^n-1) - a(u^n))(\nabla \eta_t^n, \nabla v_h)
\]
\[
+ \Delta t((b(u_h^{n-1}) - b(u^n-1))\nabla \eta_t^n, \nabla v_h)
\]
\[
+ \Delta t((b(u^n-1) - b(u^n))(\nabla \eta_t^n, \nabla v_h)
\]

Letting \(v_h = \xi^n\) in (4.14), we have

\[
(c(x)(\xi^n - \xi^{n-1}), \xi^n) + (a(u_h^{n-1})(\nabla \xi^n - \nabla \xi^{n-1}), \nabla \xi^n)
\]
\[
+ \Delta t (b(u_h^{n-1})\nabla \xi^n, \nabla \xi^n)
\]
\[= (c(x)(\eta^n - \hat{\eta}^{n-1}), \xi^n) + (c(x)(\hat{\xi}^{n-1} - \xi^{n-1}), \xi^n)
\]
\[
+ ((a(u^n-1) - a(u_h^{n-1}))(\nabla u^n - \nabla u^{n-1}), \nabla \xi^n)
\]
\[
+ \Delta t ((b(u^n-1) - b(u_h^{n-1}))\nabla u^n, \nabla \xi^n) - \Delta t (f(u^n-1) - f(u_h^{n-1}), \xi^n)
\]
\[
- \Delta t (E_1^n, \xi^n) - \Delta t (E_2^n, \xi^n) - \Delta t (E_3^n, \nabla \xi^n) - \Delta t (E_4^n, \nabla \xi^n)
\]
\[
+ ((a(u_h^{n-1}) - a(u^n-1))(\nabla \eta^n - \nabla \eta^{n-1}), \nabla \xi^n)
\]
\[
+ (a(u^n-1))(\nabla \eta^n - \nabla \eta^{n-1} - \Delta t \nabla \eta_t^n), \nabla \xi^n)
\]
\[
+ \Delta t((a(u^n-1) - a(u^n))(\nabla \eta_t^n, \nabla \xi^n)
\]
\[
+ \Delta t((b(u_h^{n-1}) - b(u^n-1))\nabla \eta_t^n, \nabla \xi^n)
\]
\[
+ \Delta t((b(u^n-1) - b(u^n))(\nabla \eta_t^n, \nabla \xi^n)
\]

Let \(n \geq 2\). We obtain the following lower bounds for three terms of the left-hand side of (4.15):

\[
LA_1 = (c(x)(\xi^n - \xi^{n-1}), \xi^n) \geq \frac{1}{2} (\|\sqrt{c(x)}\xi^n\|^2 - \|\sqrt{c(x)}\xi^{n-1}\|^2)
\]
\[L A_2 = (a(u_h^{n-1})(\nabla \xi^n - \nabla \xi^{n-1}), \nabla \xi^n) \]
\[\geq \frac{1}{2}(\|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2 - \|\sqrt{a(u_h^{n-2})\nabla \xi^{n-1}}\|^2) \]
\[+ \frac{1}{2}(\|\sqrt{a(u_h^{n-2})\nabla \xi^{n-1}}\|^2 - \|\sqrt{a(u_h^{n-1})\nabla \xi^{n-1}}\|^2), \]
\[L A_3 = \Delta t (b(u_h^{n-1})\nabla \xi^n, \nabla \xi^n) \geq b_s \Delta t \|\nabla \xi^n\|^2. \]

And for \(RA_1 \sim RA_8 \), we have the following bounds

\[RA_1 = (c(x)(\eta^n - \hat{\eta}^{n-1}), \xi^n) \]
\[= (c(x)(\eta^n - \hat{\eta}^{n-1}, \xi^n) + (c(x)(\eta^{n-1} - \hat{\eta}^{n-1}), \xi^n) \]
\[\leq K \Delta t [\|\eta^n\| + \|\eta^{n-1}\| + \|\nabla \xi^n\|] \]
\[\leq K \Delta t [\|\eta^n\|^2 + \|\eta^{n-1}\|^2 + \|c(x)\xi^n\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_2 = (c(x)(\xi^n - \xi^{n-1}), \xi^n) \leq K \Delta t \|\nabla \xi^n\| \]
\[\leq K \Delta t [\|\sqrt{c(x)\xi^n}\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_3 = \Delta t ((a(u_h^{n-1}) - a(u_h^{n-1})) \nabla u^n - \nabla u^{n-1}, \nabla \xi^n) \]
\[\leq K \Delta t [\|\eta^{n-1}\| + \|\xi^{n-1}\| + \|\nabla \xi^n\|] \]
\[\leq K \Delta t [\|\eta^{n-1}\|^2 + \|\sqrt{c(x)\xi^{n-1}}\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_4 = \Delta t ((b(u_h^{n-1}) - b(u_h^{n-1})) \nabla u^n, \nabla \xi^n) \]
\[\leq K \Delta t [\|\eta^{n-1}\| + \|\xi^{n-1}\| + \|\nabla \xi^n\|] \]
\[\leq K \Delta t [\|\eta^{n-1}\|^2 + \|\sqrt{c(x)\xi^{n-1}}\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_5 = -\Delta t (f(u_h^{n-1}) - f(u_h^{n-1}), \xi^n) \leq K \Delta t [\|\eta^{n-1}\| + \|\xi^{n-1}\|] \]
\[\leq K \Delta t [\|n^{n-1}\|^2 + \|\sqrt{c(x)\xi^{n-1}}\|^2 + \|\sqrt{c(x)\xi^n}\|^2], \]
\[RA_6 = -\Delta t (E_1^n, \xi^n) \leq K \Delta t [\|\eta^n\|^2] \leq K \Delta t [\|\Delta t\|^2 + \|c(x)\xi^n\|^2], \]
\[RA_7 = -\Delta t (E_2^n, \xi^n) \leq K \Delta t [\|\Delta t\|^2 + \|c(x)\xi^n\|^2], \]
\[RA_8 = -\Delta t (E_3^n, \nabla \xi^n) \leq K \Delta t [\|\Delta t\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2]. \]

And for \(RA_9 \sim RA_{13} \), we have the following bounds

\[RA_9 = -\Delta t (E_4^n, \nabla \xi^n) \leq K \Delta t [\|\Delta t\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_{10} = ((a(u_h^{n-1}) - a(u_h^{n-1})) \nabla \eta^n - \nabla \eta^{n-1}, \nabla \xi^n) \]
\[\leq K \Delta t [\|\eta^{n-1}\|^2 + \|\sqrt{c(x)\xi^{n-1}}\|^2 + \|\sqrt{a(u_h^{n-1})\nabla \xi^n}\|^2], \]
\[RA_{11} = (a(u^{n-1}) \nabla \eta^n - \nabla \eta^{n-1} - \Delta t \nabla \eta^n, \nabla \xi^n) \leq K(\Delta t)^2 \|\nabla \xi^n\| \]
\[\leq K\Delta t[(\Delta t)^2 + \|a(u_h^{n-1})\nabla \xi^n\|^2], \]
\[RA_{12} = \Delta t((a(u^{n-1}) - a(u^n)) \nabla \eta^n, \nabla \xi^n) \]
\[\leq K\Delta t[\|\nabla \eta^n\|_\infty[(\Delta t)^2 + \|a(u_h^{n-1})\nabla \xi^n\|^2] \]
\[\leq K\Delta t[(\Delta t)^2 + \|a(u_h^{n-1})\nabla \xi^n\|^2], \]
\[RA_{13} = \Delta t((b(u_h^{n-1}) - b(u^n)) \nabla \eta^n, \nabla \xi^n) \]
\[\leq K\Delta t[\|\eta^{n-1}\|^2 + \|\xi^{n-1}\|^2 \|\nabla \xi^n\| \]
\[\leq K\Delta t[\|\eta^{n-1}\|^2 + \|\xi^{n-1}\|^2 + \|a(u_h^{n-1})\nabla \xi^n\|^2], \]
\[RA_{14} = \Delta t((b(u^{n-1}) - b(u^n)) \nabla \eta^n, \nabla \xi^n) \]
\[\leq K\Delta t[(\Delta t)^2 + \|a(u_h^{n-1})\nabla \xi^n\|^2]. \]

Thus, using all bounds for \(LA_1 \sim LA_3 \) and \(RA_1 \sim RA_{14} \), we obtain from (4.15)

\[
\frac{1}{2}(\|\sqrt{c(x)}\xi^n\|^2 - \|\sqrt{c(x)}\xi^{n-1}\|^2) \\
+ \frac{1}{2}(\|\sqrt{a(u_h^{n-1})}\nabla \xi^n\|^2 - \|\sqrt{a(u_h^{n-2})}\nabla \xi^{n-1}\|^2) + b_s \Delta t\|\nabla \xi^n\|^2 \\
\leq \frac{1}{2}(\|\sqrt{a(u_h^{n-1})}\nabla \xi^{n-1}\|^2 - \|\sqrt{a(u_h^{n-2})}\nabla \xi^{n-1}\|^2) \\
+ K\Delta t[\|\eta^{n-1}\|^2 + \|\xi^n\|^2 + \|\sqrt{c(x)}\xi^{n-1}\|^2] \\
+ \|\sqrt{c(x)}\xi^n\|^2 + \|\sqrt{a(u_h^{n-1})}\nabla \xi^n\|^2 + (\Delta t)^2]. \tag{4.16}
\]

Notice that

\[\|\sqrt{a(u_h^{n-1})}\nabla \xi^{n-1}\|^2 - \|\sqrt{a(u_h^{n-2})}\nabla \xi^{n-1}\|^2 \leq K\Delta t\|\nabla \xi^{n-1}\|^2. \]

So, we obtain from (4.16)

\[
\frac{1}{2}(\|\sqrt{c(x)}\xi^n\|^2 - \|\sqrt{c(x)}\xi^{n-1}\|^2) \\
+ \frac{1}{2}(\|\sqrt{a(u_h^{n-1})}\nabla \xi^n\|^2 - \|\sqrt{a(u_h^{n-2})}\nabla \xi^{n-1}\|^2) + b_s \Delta t\|\nabla \xi^n\|^2 \\
\leq K\Delta t[\|\eta^{n-1}\|^2 + \|\xi^n\|^2 + \|\xi^{n-1}\|^2 + \|\xi^n\|^2] \\
+ \|\nabla \xi^{n-1}\|^2 + \|\nabla \xi^n\|^2 + (\Delta t)^2]. \tag{4.17}
\]
Now, summing both sides of (4.17) from \(n = 2 \) to \(k \) and using the assumptions on \(a \) and \(b \), we get

\[
\|\xi^k\|^2 + \|\nabla\xi^k\|^2 + \Delta t \sum_{n=2}^k \|\nabla\xi^n\|^2 \\
\leq K(\|\xi^1\|^2 + \|\nabla\xi^1\|^2) \\
+ K\Delta t \sum_{n=1}^k [\|\eta^n\|^2 + \|\eta^n_i\|^2 + \|\xi^n\|^2 + \|\nabla\xi^n\|^2 + (\Delta t)^2]
\]

(4.18)

Letting \(n = 1 \) in (4.15) and using the fact that \(\xi^0 = 0 \), we obtain

\[
(c(x)\xi^1, \xi^1) + (a(u_h^0)\nabla\xi^1, \nabla\xi^1) + \Delta t (b(u_h^0)\nabla\xi^1, \nabla\xi^1) \\
= (c(x)(\eta^1 - \eta^0), \xi^1) \\
+ ((a(u^0) - a(u_h^0))(\nabla u^1 - \nabla u^0), \nabla\xi^1) \\
+ \Delta t((b(u^0) - b(u_h^0))\nabla u^1, \nabla\xi^1) \\
- \Delta t (E_1^1 + E_2^1, v) - \Delta t (E_3^1 + E_4^1, \nabla\xi^1) \\
+ ((a(u_h^0) - a(u^0))(\nabla\eta^1 - \nabla\eta^0), \nabla\xi^1) \\
+ (a(u^0)(\nabla\eta^1 - \nabla\eta^0 - \Delta t \nabla\eta^1_i), \nabla\xi^1) \\
+ \Delta t((a(u^0) - a(u_h^0))\nabla\eta^1_i, \nabla\xi^1) + \Delta t((b(u_h^0) - b(u^0))\nabla\eta^1, \nabla\xi^1) \\
+ \Delta t((b(u^0) - b(u_h^0))\nabla\eta^1, \nabla\xi^1).
\]

Following similar calculations for the estimates, it is obvious that

\[
\|\xi^1\|^2 + \|\nabla\xi^1\|^2 + \Delta t \|\nabla\xi^1\|^2 \\
\leq K\Delta t [\|\eta^1\|^2 + \|\eta^0\|^2 + \|\xi^1\|^2 + \|\nabla\xi^1\|^2 + (\Delta t)^2].
\]

So, by Lemma 4.2, we have

\[
\|\xi^1\|^2 + \|\nabla\xi^1\|^2 + \Delta t \|\nabla\xi^1\|^2 \leq K\Delta t [h^{2\mu} + (\Delta t)^2]
\]

(4.19)

for sufficiently small \(\Delta t \). So, applying Gronwall’s inequality, Lemma 4.2, and (4.19) to (4.18), we have

\[
\|\xi^k\|^2 + \|\nabla\xi^k\|^2 \leq K[h^{2\mu} + (\Delta t)^2].
\]

(4.20)

Thus, by the triangular inequality and Lemma 4.2, we obtain the result of this theorem.

\[\square \]

For \(\sigma = (\sigma_1, \sigma_2) \in W \), let \(\tilde{\sigma} = (\tilde{\sigma}_1, \tilde{\sigma}_2) \) be a projection of \(\sigma \) onto \(W_h \) satisfying

\[
(c(x)^{-1} \nabla \cdot (\sigma - \tilde{\sigma}), \nabla \cdot \tau) + \lambda(\sigma - \tilde{\sigma}, \tau) = 0, \quad \forall \tau \in W_h,
\]

(4.21)

where \(\lambda \) is a positive real number. The existence of \(\tilde{\sigma} \) can be obtained from the Lax-Milgram lemma.
Lemma 4.5. Let $\sigma \in W \cap H^s(\Omega)$. Then there exists a constant $K > 0$ such that
\[
\|\nabla \cdot (\sigma - \tilde{\sigma})\| + \|\sigma - \tilde{\sigma}\| \leq K h^{\mu - 1}\|\sigma\|_s,
\]
where $\mu = \min(k + 1, s)$.

Proof. By the definition of $\tilde{\sigma}$, we get
\[
\|c(x)^{-\frac{1}{2}} \nabla \cdot (\sigma - \tilde{\sigma})\|^2 + \lambda \|\sigma - \tilde{\sigma}\|^2 = (c(x)^{-1} \nabla \cdot (\sigma - \tilde{\sigma}), \nabla \cdot (\sigma - \tilde{\sigma})) + \lambda (\sigma - \tilde{\sigma}, \sigma - \tilde{\sigma})
\]
\[
= (c(x)^{-1} \nabla \cdot (\sigma - \tilde{\sigma}), \nabla \cdot (\sigma - \Pi_h \sigma)) + \lambda (\sigma - \tilde{\sigma}, \sigma - \Pi_h \sigma)
\]
\[
\leq \|c(x)^{-\frac{1}{2}} \nabla \cdot (\sigma - \tilde{\sigma})\|\|c(x)^{-\frac{1}{2}} \nabla \cdot (\sigma - \Pi_h \sigma)\| + \lambda \|\sigma - \tilde{\sigma}\|\|\sigma - \Pi_h \sigma\|
\]
and so, by (3.2),
\[
\|c(x)^{-\frac{1}{2}} \nabla \cdot (\sigma - \tilde{\sigma})\|^2 + \lambda \|\sigma - \tilde{\sigma}\|^2 \leq \|c(x)^{-\frac{1}{2}} \nabla \cdot (\sigma - \Pi_h \sigma)\|^2 + \lambda \|\Pi_h \sigma - \tilde{\sigma}\|^2
\]
\[
\leq Kh^{2(\mu - 1)}\|\sigma\|_s^2,
\]
for sufficiently small $\lambda > 0$. \hfill \Box

For our error analysis, we let $\pi = \sigma - \tilde{\sigma}$ and $\rho = \tilde{\sigma} - \sigma_h$. Then $\sigma - \sigma_h = \pi + \rho$.

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 hold. Let $\sigma \in W \cap H^s(\Omega)$. Then we have
\[
\|\nabla \cdot (\sigma^n - \sigma^n_h)\| + \|\sigma^n - \sigma^n_h\| \leq K(h^{\mu - 1} + (\Delta t)).
\]
(4.22)
where $\mu = \min(k + 1, s)$.

Proof. First, we will prove that
\[
\|\nabla \cdot \rho^n\| + \|\rho^n\| \leq K(h^{\mu - 1} + (\Delta t)).
\]

By applying Lemma 4.1 to (4.8) with $v = 0$, we get
\[
(\Delta t)^2 (c(x)^{-1} \nabla \cdot \sigma^n, \nabla \cdot \tau) + (\Delta t)^2 (A(u^{n-1})^{-1} \sigma^n, \tau)
\]
\[
= (c(x)^{-1} (c(x)\tilde{u}^n + \Delta t (f(u^{n-1}) + E_1^n + E_2^n)), \Delta t \nabla \cdot \tau)
\]
\[
+ (A(u^{n-1})^{-1} (a(u^{n-1}) \nabla u^n + \Delta t (E_3^n + E_4^n)), \Delta t \tau),
\]
and so, we get
\[
(\Delta t)^2 (c(x)^{-1} \nabla \cdot \sigma^n, \nabla \cdot \tau) + (A(u^{n-1})^{-1} \sigma^n, \tau)
\]
\[
= \frac{1}{\Delta t} (\tilde{u}^n - \Delta t \nabla \cdot \tau) + (c(x)^{-1} (f(u^{n-1}) + E_1^n + E_2^n), \nabla \cdot \tau)
\]
\[
+ \frac{1}{\Delta t} (A(u^{n-1})^{-1} a(u^{n-1}) \nabla u^n, \tau) + (A(u^{n-1})^{-1} (E_3^n + E_4^n), \tau).
\]
(4.23)
Since
\[1 - A(u^{n-1})^{-1}a(u^{n-1}) = A(u^{n-1})^{-1}(A(u^{n-1}) - a(u^{n-1})) = \Delta t A(u^{n-1})^{-1}b(u^{n-1}), \]
we have from (4.23)
\[
(c(x)^{-1} \nabla \cdot \sigma^n, \nabla \cdot \tau) + (A(u^{n-1})^{-1} \sigma^n, \tau) \\
= \frac{1}{\Delta t} \left(\nabla(u^{n-1} - \hat{u}^{n-1}), \tau \right) + \left(c(x)^{-1} (f(u^{n-1}) + E^n_1 + E^n_2), \nabla \cdot \tau \right) - \left(A(u^{n-1})^{-1} b(u^{n-1}) \nabla u^{n-1}, \tau \right) + \left(A(u^{n-1})^{-1} (E^n_3 + E^n_4), \tau \right). \tag{4.24}
\]
Similarly, we have
\[
(c(x)^{-1} \nabla \cdot \sigma^n, \nabla \cdot \tau) + (A(u^{n-1})^{-1} \sigma^n, \tau) \\
= \frac{1}{\Delta t} \left(\nabla(\hat{u}^{n-1} - \hat{u}^{h-1}), \tau \right) + (c(x)^{-1} f(u^{n-1}), \nabla \cdot \tau) - (A(u^{n-1})^{-1} b(u^{n-1}) \nabla u^{n-1}, \tau). \tag{4.25}
\]
Therefore, from (4.24) and (4.25), we have
\[
(c(x)^{-1} (\nabla \cdot \sigma^n - \nabla \cdot \sigma^n_h), \nabla \cdot \tau) + (A(u^{n-1})^{-1} \sigma^n - A(u^{n-1})^{-1} \sigma^n_h, \tau) \\
= \frac{1}{\Delta t} \left(\nabla(u^{n-1} - u^{n-1} - \hat{u}^{n-1} + \hat{u}^{h-1}), \tau \right) + \left(c(x)^{-1} E^n_1, \nabla \cdot \tau \right) + \left(c(x)^{-1} E^n_2, \nabla \cdot \tau \right) + \left(c(x)^{-1} (f(u^{n-1}) - f(u^{n-1})), \nabla \cdot \tau \right) - \left(A(u^{n-1})^{-1} b(u^{n-1}) \nabla u^{n-1} - A(u^{n-1})^{-1} b(u^{h-1}) \nabla u^{h-1}, \tau \right) + \left(A(u^{n-1})^{-1} E^n_3, \tau \right) + \left(A(u^{n-1})^{-1} E^n_4, \tau \right),
\]
and hence
\[
(c(x)^{-1} (\nabla \cdot \sigma^n - \nabla \cdot \sigma^n_h), \nabla \cdot \tau) + (A(u^{n-1})^{-1} (\sigma^n - \sigma^n_h), \tau) \\
= \left((A(u^{n-1})^{-1} - A(u^{n-1})^{-1}) \sigma^n, \tau \right) + \frac{1}{\Delta t} \left(\nabla(\hat{u}^{n-1} - \hat{u}^{h-1}), \tau \right) - \frac{1}{\Delta t} \left(\nabla(\hat{u}^{n-1} - \hat{u}^{h-1}), \tau \right) + \left(c(x)^{-1} E^n_1, \nabla \cdot \tau \right) + \left(c(x)^{-1} E^n_2, \nabla \cdot \tau \right) + \left(c(x)^{-1} (f(u^{n-1}) - f(u^{n-1})), \nabla \cdot \tau \right) - \left(A(u^{n-1})^{-1} b(u^{n-1}) \nabla u^{n-1} - A(u^{n-1})^{-1} b(u^{h-1}) \nabla u^{h-1}, \tau \right) + \left(A(u^{n-1})^{-1} E^n_3, \tau \right) + \left(A(u^{n-1})^{-1} E^n_4, \tau \right). \tag{4.26}
\]
Therefore, we have from (4.26)

\[
(c(x)^{-1} \nabla \cdot \rho^n, \nabla \cdot \tau_h) + (A(u_h^{n-1})^{-1} \rho^n, \tau_h^n) \\
= - (c(x)^{-1} \nabla \cdot \pi^n, \nabla \cdot \tau_h) - (A(u_h^{n-1})^{-1} \pi^n, \tau_h^n) \\
+ \left((A(u_h^{n-1})^{-1} - A(u_h^{n-1})^{-1}) \sigma^n, \tau_h^n \right) + \frac{1}{\Delta t} \left(\nabla(\eta^{n-1} - \dot{\eta}^{n-1}), \tau_h \right) \\
- \frac{1}{\Delta t} \left(\nabla(\xi^{n-1} - \dot{\xi}^{n-1}), \tau_h \right) + \left(c(x)^{-1} E_1^n, \nabla \cdot \tau_h \right) \\
+ \left(c(x)^{-1} E_2^n, \nabla \cdot \tau_h \right) + \left(c(x)^{-1} (f(u^{n-1}) - f(u_h^{n-1})), \nabla \cdot \tau_h \right)
\]

\[(4.27)\]

Choosing \(\tau_h = \rho^n \) in (4.27), we obtain

\[
(c(x)^{-1} \nabla \cdot \rho^n, \nabla \cdot \rho^n) + (A(u_h^{n-1})^{-1} \rho^n, \rho^n) \\
= - (c(x)^{-1} \nabla \cdot \pi^n, \nabla \cdot \rho^n) - (A(u_h^{n-1})^{-1} \pi^n, \rho^n) \\
+ \left((A(u_h^{n-1})^{-1} - A(u_h^{n-1})^{-1}) \sigma^n, \rho^n \right) + \frac{1}{\Delta t} \left(\nabla(\eta^{n-1} - \dot{\eta}^{n-1}), \rho^n \right) \\
- \frac{1}{\Delta t} \left(\nabla(\xi^{n-1} - \dot{\xi}^{n-1}), \rho^n \right) + \left(c(x)^{-1} E_1^n, \nabla \cdot \rho^n \right) \\
+ \left(c(x)^{-1} E_2^n, \nabla \cdot \rho^n \right) + \left(c(x)^{-1} (f(u^{n-1}) - f(u_h^{n-1})), \nabla \cdot \rho^n \right)
\]

\[(4.28)\]

Note that

\[
A(\cdot)^{-1} = \frac{1}{a(\cdot) + \Delta t b(\cdot)} \leq \frac{1}{a_*}
\]

and

\[
A(u^{n-1})^{-1} - A(u_h^{n-1})^{-1} = \frac{A(u_h^{n-1}) - A(u_h^{n-1})}{A(u^{n-1}) A(u_h^{n-1})} \leq K|\xi^{n-1} - \eta^{n-1}|.
\]
For $S_1 \sim S_5$, we obtain the following bounds

\[S_1 = \lambda(\pi^n, \rho^n) \leq K\|\pi^n\|^2 + \epsilon\|\rho^n\|^2, \]
\[S_2 \leq K\|\pi^n\|^2 + \epsilon\|\rho^n\|^2, \]
\[S_3 \leq K(\|\xi^{n-1}\|^2 + \|\eta^{n-1}\|^2) + \epsilon\|\rho^n\|^2, \]
\[S_4 \leq K\|\nabla\eta^{n-1}\|^2 + \epsilon\|\nabla \cdot \rho^n\|^2, \]
\[S_5 \leq K\|\nabla\xi^{n-1}\|^2 + \epsilon\|\nabla \cdot \rho^n\|^2. \]

And for $S_6, S_7, S_{12},$ and S_{13}, we get the bounds

\[S_6 \leq K(\Delta t)^2 + \epsilon\|\nabla \cdot \rho^n\|^2, \]
\[S_7 \leq K(\Delta t)^2 + \epsilon\|\nabla \cdot \rho^n\|^2, \]
\[S_{12} \leq K(\Delta t)^2 + \epsilon\|\rho^n\|^2, \]
\[S_{13} \leq K(\Delta t)^2 + \epsilon\|\rho^n\|. \]

And for $S_8, S_9,$ and S_{10}, we get the bounds

\[S_8 \leq K(\|\xi^{n-1}\|^2 + \|\eta^{n-1}\|^2) + \epsilon\|\nabla \cdot \rho^n\|^2, \]
\[S_9 \leq K(\|\xi^{n-1}\|^2 + \|\eta^{n-1}\|^2) + \epsilon\|\rho^n\|^2, \]
\[S_{10} \leq K(\|\xi^{n-1}\|^2 + \|\eta^{n-1}\|^2) + \epsilon\|\rho^n\|^2. \]

And for S_{11}, we get the bound

\[S_{11} = -\left(A(u_h^{n-1})^{-1}b(u_h^{n-1})(\nabla u^n - \nabla u_h^{n-1}), \rho^n \right) \]
\[\leq K(\|\xi^{n-1}\|^2 + \|\eta^{n-1}\|^2) + \epsilon\|\rho^n\|^2 + \epsilon\|\nabla \cdot \rho^n\|^2. \]

Thus, by using these estimates for $S_1 \sim S_{13}$, Lemma 4.2, Lemma 4.5, and (4.20), we get from (4.27)

\[\|\nabla \cdot \rho^n\|^2 + \|\rho^n\|^2 \]
\[\leq K\left(\|\pi^n\|^2 + \|\eta^{n-1}\|^2 + \|\nabla \eta^{n-1}\|^2 + \|\xi^{n-1}\|^2 + \|\nabla \xi^{n-1}\|^2 + (\Delta t)^2 \right) \]
\[\leq K\left(h^2(\mu - 1) + (\Delta t)^2 \right) \]

and so

\[\|\nabla \cdot \rho^n\| + \|\rho^n\| \leq K(h^{\mu - 1} + (\Delta t)). \]

Thus by the triangular inequality and Lemma 4.5, we obtain the result of this theorem.

\[\square \]
References

Mi Ray Ohm
Division of Mechatronics Engineering
Dongseo University
47011, Busan, Korea
E-mail address: mrohm@dongseo.ac.kr

Jun Yong Shin
Department of Applied Mathematics
Pukyong National University
48513, Busan, Korea
E-mail address: jyshin@pknu.ac.kr