DOI QR코드

DOI QR Code

Characterization of Antibacterial Strains against Kiwifruit Bacterial Canker Pathogen

  • Kim, Min-Jung (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Chae, Dae-Han (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Gyeongjun (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Da-Ran (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2019.05.29
  • Accepted : 2019.07.22
  • Published : 2019.10.01

Abstract

Kiwifruit (Actinidia spp.) is an economically important crop and a bacterial canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the most destructive disease in kiwifruit production. Therefore, prevent and control of the disease is a critical issue in kiwifruit industry worldwide. Unfortunately, there is no reliable control methods have been developed. Recently, interest in disease control using microbial agents is growing. However, kiwifruit microbiota and their roles in the disease control is mainly remaining unknown. In this study, we secured bacterial libraries from kiwifruit ecospheres (rhizosphere, endospere, and phyllosphere) and screened reliable biocontrol strains against Psa. As the results, Streptomyces racemochromogenes W1SF4, Streptomyces sp. W3SF9 and S. parvulus KPB2 were selected as anti-Psa agents from the libraries. The strains showed forcible antibacterial activity as well as exceptional colonization ability on rhizosphere or phyllosphere of kiwifruit. Genome analyses of the strains suggested that the strains may produce several anti-Psa secondary metabolites. Our results will contribute to develop biocontrol strains against the kiwifruit canker pathogen and the disease management strategies.

Keywords

References

  1. Ahn, S.-J., Lee, S.-J., Kook, J.-K. and Lim, B.-S. 2009. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. 25:206-213. https://doi.org/10.1016/j.dental.2008.06.002
  2. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M. Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75 https://doi.org/10.1186/1471-2164-9-75
  3. Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H. and Baldani, V. L. D. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413-431. https://doi.org/10.1007/s11104-014-2186-6
  4. Balestra, G. M., Mazzaglia, A., Quattrucci, A., Renzi, M. and Rossetti, A. 2009. Current status of bacterial canker spread on kiwifruit in Italy. Australas. Plant Dis. Notes 4:34-36.
  5. Blin, K., Pascal Andreu, V., de los Santos, E. L. C., Del Carratore, F., Lee, S. Y., Medema, M. H. and Weber, T. 2018. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 47:D625-D630. https://doi.org/10.1093/nar/gky1060
  6. Bonanomi, G., Lorito, M., Vinale, F. and Woo, S. L. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56:1-20. https://doi.org/10.1146/annurev-phyto-080615-100046
  7. Bringel, F. and Couee, I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 6:486. https://doi.org/10.3389/fmicb.2015.00486
  8. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E. V. L. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
  9. Chebotar, V. K. Malfanova, N. V., Shcherbakov, A. V., Ahtemova, G. A., Borisov, A. Y., Lugtenberg, B. and Tikhonovich, I. A. 2014. Endophytic bacteria in microbial preparations that improve plant development (review). Appl. Biochem. Microbiol. 51:271-277.
  10. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crüsemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  11. Chi, F., Shen, S.-H., Cheng, H.-P., Jing, Y.-X., Yanni, Y. G. and Dazzo, F. B. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71:7271-7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005
  12. Colombi, E., Straub, C., Kunzel, S., Templeton, M. D., McCann, H. C. and Rainey, P. B. 2017. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ Microbiol. 19:819-832. https://doi.org/10.1111/1462-2920.13662
  13. Cwynar, L. C., Burden, E. and McAndrews, J. H. 1979. An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can J Earth Sci. 16:1115-1120. https://doi.org/10.1139/e79-097
  14. De Jong, W., Wosten, H. A. B., Dijkhuizen, L. and Claessen, D. 2009. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73:1128-1140. https://doi.org/10.1111/j.1365-2958.2009.06838.x
  15. Deepthi, M. K., Sudhakar, M. S. and Devamma, M. N. 2012. Isolation and screening of Streptomyces sp. from Coringa mangrove soils for enzyme production and antimicrobial activity. Int. J. Pharm. Chem. Biol. Sci. 2:110-116.
  16. Donati, I., Buriani, G., Cellini, A., Mauri, S., Costa, G. and Spinelli, F. 2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J Berry Res. 4:53-67. https://doi.org/10.3233/JBR-140073
  17. English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D. M., Reid, J. G., Worley, K. C. and Gibbs, R. A. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7:e47768. https://doi.org/10.1371/journal.pone.0047768
  18. Fujikawa, T. and Sawada, H. 2016. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. Sci. Rep. 6:21399. https://doi.org/10.1038/srep21399
  19. Hardoim, P. R., van Overbeek, L. S. and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471. https://doi.org/10.1016/j.tim.2008.07.008
  20. Kaur, H., Kaur, J. and Gera, R. 2016. Plant growth promoting rhizobacteria: a boon to agriculture. Int. J. Cell Sci. Biotechnol. 5:17-22.
  21. Kim, E., Chang, Y. H., Ko, J. Y. and Jeong, Y. 2013. Quality characteristics of Makgeolli added with kiwifruit (Actinidia deliciosa). J. Korean Soc. Food Sci. Nutr. 42:1821-1828. https://doi.org/10.3746/jkfn.2013.42.11.1821
  22. Kim, H. S., Han, O. K., Kim, S. C., Kim, M. J. and Kwak, Y.-S. 2017. Screening and investigation Lactobacillus spp. to improve Secale cereale silage quality. Anim. Sci. J. 88:1538-1546. https://doi.org/10.1111/asj.12781
  23. Kisaki, G., Tanaka, S., Ishihara, A., Igarashi, C., Morimoto, T., Hamano, K., Endo, A., Sugita-Konishi, S., Tabuchi, M., Gomi, K., Ichimura, K., Suezawa, K., Otani, M., Fukuda, T., Manabe, T., Fujimura, T., Kataoka, I. and Akimitsu, K. 2018. Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3. J. Gen. Plant Pathol. 84:399-406. https://doi.org/10.1007/s10327-018-0804-5
  24. Louden, B. C., Haarmann, D. and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12:51-53. https://doi.org/10.1128/jmbe.v12i1.249
  25. Miyashiro, S., Ando, T., Hirayama, K., Kida, T., Shibai, H., Murai, A., Shiio, T. and Udaka, S. 1983. New streptothricingroup antibiotics, AN-201 I and II. J. Antibiot. 36:1638-1643. https://doi.org/10.7164/antibiotics.36.1638
  26. Nakazawa, Y., Sagane, Y., Sakurai, S.-I., Uchino, M., Sato, H., Toeda, K. and Takano, K. 2011. Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification. Appl. Biochem. Biotechnol. 165:1494-1506. https://doi.org/10.1007/s12010-011-9370-4
  27. Ohnishi, S., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M. and Horinouchi, S. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO13350. J. Bacteriol. 190:4050-4060. https://doi.org/10.1128/JB.00204-08
  28. Olano, C., Wilkinson, B., Sanchez, C., Moss, S. J., Sheridan, R., Math, V., Weston, A. J., Brana, A. F., Martin, C. J., Oliynyk, M., Mendez, C., Leadlay, P. F. and Salas, J. A. 2004. Biosynthesis of the angoiogenesis inhibitor borrelidin by Streptomyces parvulus Tu4055: cluster analysis and assignment of function. Chem. Biol. 11:87-97. https://doi.org/10.1016/S1074-5521(03)00297-7
  29. Paranthaman, S. and Dharmalingam, K. 2003. Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl. Environ. Microbiol. 69:84-91. https://doi.org/10.1128/AEM.69.1.84-91.2003
  30. Patel, D. and Parmar, P. 2013. Isolation and screening of phosphate solubilizing bacteria from sunflower rhizosphere. Glob. J. Biosci. Biotechnol. 2:438-441.
  31. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362-370.
  32. Pulsawat, N., Kitani, S. and Nihira, T. 2007. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393:31-42. https://doi.org/10.1016/j.gene.2006.12.035
  33. Renzi, M., Copini, P., Taddei, A. R., Rossetti, A., Gallipoli, L., Mazzaglia, A. and Balestra, G. M. 2012. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102:827-840. https://doi.org/10.1094/PHYTO-02-12-0019-R
  34. Sawada, H., Kondo, K. and Nakaune, R. 2016. Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan. Jpn. J. Phytopathol. 82:101-115. https://doi.org/10.3186/jjphytopath.82.101
  35. Sebastien, M., Margarita, M.-M. and Haissam, J. M. 2015. Biological control in the microbiome era: challenges and opportunities. Biol. Control 89:98-108. https://doi.org/10.1016/j.biocontrol.2015.06.003
  36. Stone, B. W. G. and Jackson, C. R. 2016. Biogeographic patterns between bacterial phyllosphere communities of the southern magnolia (Magnolia grandiflora) in a small forest. Microb. Ecol. 71:954-961. https://doi.org/10.1007/s00248-016-0738-4
  37. Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dye, F. and Prigent-Combaret, P. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4:356. https://doi.org/10.3389/fpls.2013.00356
  38. Wang, D. S., Xue, Q. H., Zhu, W. J., Zhao, J., Duan, J. L. and Shen, G. H. 2013. Microwave irradiation is a useful tool for improving isolation of Actinomycetes from soil. Microbiology 82:102-110. https://doi.org/10.1134/S0026261712060161
  39. Wilson, K. 2001. Preparation of genomic DNA from bacteria. In: Current protocol in molecular biology, ed. by F. M. Ausubel, pp. 2.4.1-2.4.5. Wiley, New York, NJ, USA.
  40. Xin, X.-F., Kvitko, B. and He, S. Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16:316-328. https://doi.org/10.1038/nrmicro.2018.17
  41. Yang, X., Yi, X.-K., Chen, Y., Zhang, A.-F., Zhang, J.-Y., Gao, Z.-H., Qi, Y.-J. and Xu, Y.-L. 2015. Identification of Pseudomonas syringae pv. actinidiae strains causing bacterial canker of kiwifruit in the Anhui province of China, and determination of their streptomycin sensitivities. Genet. Mol. Res. 14:8201-8210. https://doi.org/10.4238/2015.July.27.7